2024届新余市重点中学数学高二第二学期期末质量跟踪监视试题含解析_第1页
2024届新余市重点中学数学高二第二学期期末质量跟踪监视试题含解析_第2页
2024届新余市重点中学数学高二第二学期期末质量跟踪监视试题含解析_第3页
2024届新余市重点中学数学高二第二学期期末质量跟踪监视试题含解析_第4页
2024届新余市重点中学数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届新余市重点中学数学高二第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现有4种不同品牌的小车各2辆(同一品牌的小车完全相同),计划将其放在4个车库中(每个车库放2辆则恰有2个车库放的是同一品牌的小车的不同放法共有()A.144种 B.108种 C.72种 D.36种2.下列几种推理中是演绎推理的序号为()A.由,,,…猜想B.半径为的圆的面积,单位圆的面积C.猜想数列,,,…的通项为D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.4.已知,,且,则向量在方向上的正射影的数量为A.1 B.C. D.5.用反证法证明“”时,应假设()A. B.C. D.6.已知函数的定义域为,若对于,分别为某三角形的三边长,则称为“三角形函数”.给出下列四个函数:①②③④.其中为“三角形函数”的个数是()A. B. C. D.7.若集合,则下列结论中正确的是()A. B. C. D.8.把4个苹果分给两个人,每人至少一个,不同分法种数有()A.6 B.12 C.14 D.169.已知函数,则下面对函数的描述正确的是()A. B.C. D.10.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A.24 B.48C.60 D.7211.若函数在上单调递增,则实数的取值范围为()A. B. C. D.12.若函数f(x)=x2lnx与函数A.(-∞,1e2-1e二、填空题:本题共4小题,每小题5分,共20分。13.在复数集,方程的解为________.14.计算的结果为__________.15.如图所示的数表为“森德拉姆筛”(森德拉姆,东印度学者),其特点是每行每列都成等差数列.在此表中,数字“121”出现的次数为___________.234567……35791113……4710131619……5913172125……61116212631……71319253137…………16.如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,矩形和菱形所在的平面相互垂直,,为中点.求证:平面平面;若,求二面角的余弦值.18.(12分)如图,在三棱柱ABC−中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==1.(1)求证:AC⊥平面BEF;(1)求二面角B−CD−C1的余弦值;(3)证明:直线FG与平面BCD相交.19.(12分)某工厂共有男女员工500人,现从中抽取100位员工对他们每月完成合格产品的件数统计如下:每月完成合格产品的件数(单位:百件)频数10453564男员工人数7231811(1)其中每月完成合格产品的件数不少于3200件的员工被评为“生产能手”.由以上统计数据填写下面列联表,并判断是否有95%的把握认为“生产能手”与性别有关?非“生产能手”“生产能手”合计男员工女员工合计(2)为提高员工劳动的积极性,工厂实行累进计件工资制:规定每月完成合格产品的件数在定额2600件以内的,计件单价为1元;超出件的部分,累进计件单价为1.2元;超出件的部分,累进计件单价为1.3元;超出400件以上的部分,累进计件单价为1.4元.将这4段中各段的频率视为相应的概率,在该厂男员工中选取1人,女员工中随机选取2人进行工资调查,设实得计件工资(实得计件工资=定额计件工资+超定额计件工资)不少于3100元的人数为,求的分布列和数学期望.附:,.20.(12分)已知.(I)求;(II)当,求在上的最值.21.(12分)为发展业务,某调研组对,两个公司的产品需求量进行调研,准备从国内个人口超过万的超大城市和()个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.(1)求的值;(2)若一次抽取个城市,则:①假设取出小城市的个数为,求的分布列和期望;②若取出的个城市是同一类城市,求全为超大城市的概率.22.(10分)已知函数f(x)=|x﹣a|+2a,且不等式f(x)≤4的解集为{x|﹣1≤x≤3}.(1)求实数a的值.(2)若存在实数x0,使f(x0)≤5m2+m﹣f(﹣x0)成立,求实数m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,②、将取出的2个品牌的小车任意的放进2个车库中,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,分别分析每一步的情况数目,由分步计数原理计算可得答案.【题目详解】解:根据题意,分3步进行分析:①、在4种不同品牌的小车任取2个品牌的小车,有C42种取法,②、将取出的2个品牌的小车任意的放进2个车库中,有A42种情况,③、剩余的4辆车放进剩下的2个车库,相同品牌的不能放进同一个车库,有1种情况,则恰有2个车库放的是同一品牌的小车的不同放法共有C42A42×1=72种,故选:C.点睛:能用分步乘法计数原理解决的问题具有以下特点:(1)完成一件事需要经过n个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.2、B【解题分析】

根据演绎推理、归纳推理和类比推理的概念可得答案.【题目详解】A.是由特殊到一般,是归纳推理.B.是由一般到特殊,是演绎推理.C.是由特殊到一般,是归纳推理.D.是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【题目点拨】本题考查对推理类型的判断,属于基础题.3、C【解题分析】

本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【题目详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【题目点拨】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.4、D【解题分析】

由与、可得出,向量在方向上的正射影的数量=【题目详解】向量在方向上的正射影的数量=【题目点拨】本题考查两向量垂直,其数量积等于0.向量在方向上的正射影的数量=.5、A【解题分析】

根据反证法的步骤,假设是对原命题结论的否定,即可得出正确选项.【题目详解】根据反证法的步骤,假设是对原命题的否定,P(x0)成立的否定是使得P(x0)不成立,即用反证法证明“∀x∈R,2x>0”,应假设为∃x0∈R,0故选:A.【题目点拨】本题考查反证法的概念,全称命题的否定,注意“改量词否结论”6、B【解题分析】

根据构成三角形条件,可知函数需满足,由四个函数解析式,分别求得其值域,即可判断是否满足不等式成立.【题目详解】根据题意,对于,分别为某三角形的三边长,由三角形性质可知需满足:对于①,,如当时不能构成三角形,所以①不是“三角形函数”;对于②,,则,满足,所以②是“三角形函数”;对于③,,则,当时不能构成三角形,所以③不是“三角形函数”;对于④,,由指数函数性质可得,满足,所以④是“三角形函数”;综上可知,为“三角形函数”的有②④,故选:B.【题目点拨】本题考查了函数新定义的综合应用,函数值域的求法,三角形构成的条件应用,属于中档题.7、C【解题分析】

由题意首先求得集合B,然后逐一考查所给选项是否正确即可.【题目详解】求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项,故选C.【题目点拨】本题主要考查集合的表示方法,集合之间的关系的判断等知识,熟记集合的基本运算方法是解答的关键,意在考查学生的转化能力和计算求解能力.8、C【解题分析】

给两个人命名为甲、乙,根据甲分的苹果数进行分类即可求出.【题目详解】按照分给甲的苹果数,有种分法,故选C.【题目点拨】本题主要考查分类加法计数原理的应用.9、B【解题分析】分析:首先对函数求导,可以得到其导函数是增函数,利用零点存在性定理,可以将其零点限定在某个区间上,结合函数的单调性,求得函数的最小值所满足的条件,利用不等式的传递性求得结果.详解:因为,所以,导函数在上是增函数,又,,所以在上有唯一的实根,设为,且,则为的最小值点,且,即,故,故选B.点睛:该题考查的是有关函数最值的范围,首先应用导数的符号确定函数的单调区间,而此时导数的零点是无法求出确切值的,应用零点存在性定理,将导数的零点限定在某个范围内,再根据不等式的传递性求得结果.10、D【解题分析】试题分析:由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有种排法,所以奇数的个数为,故选D.【考点】排列、组合【名师点睛】利用排列、组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤.在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置.11、D【解题分析】因为,由题设可得在上恒成立,令,则,又,且,故,所以问题转化为不等式在上恒成立,即不等式在上恒成立.令函数,则,应选答案D.点睛:本题的求解过程自始至终贯穿着转化与化归的数学思想,求函数的导数是第一个转化过程,换元是第二个转化过程;构造二次函数是第三个转化过程,也就是说为达到求出参数的取值范围,求解过程中大手笔地进行三次等价的转化与化归,从而使得问题的求解化难为易、化陌生为熟悉、化繁为简,彰显了数学思想的威力.12、B【解题分析】

通过参数分离得到a=lnx2x-x2lnx【题目详解】若函数f(x)=x2lnx2ln设t=t=lnxx⇒t'=1-lnx画出图像:a=t2-

a=t2-t1t2=故答案为B【题目点拨】本题考查了函数的零点问题,参数分离换元法是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设复数是方程的解,根据题意列出等式,求解,即可得出结果.【题目详解】设复数是方程的解,则,即,所以,解得,所以.故答案为【题目点拨】本题主要考查在复数集上求解方程,熟记复数运算法则即可,属于常考题型.14、.【解题分析】

利用组合数的性质来进行计算,可得出结果.【题目详解】由组合数的性质可得,故答案为.【题目点拨】本题考查组合数的计算,解题的关键就是利用组合数的性质进行计算,考查计算能力,属于中等题.15、1【解题分析】

第1行数组成的数列是以2为首项,公差为1的等差数列,第列数组成的数列是以为首项,公差为的等差数列,求出通项公式,可求出结果.【题目详解】根据题意,第行第列的数记为.那么每一组与的组合就是表中一个数.

因为第一行数组成的数列是以2为首项,公差为1的等差数列,

所以,

所以第列数组成的数列是以为首项,公差为的等差数列,

所以.

令.

则,则120的正约数有4×2×2=1个.所以121在表中出现的次数为1次故答案为:1.【题目点拨】本题考查归纳推理的应用,涉及行列模型的等差数列应用,和正约数的个数的求解,解题时利用首项和公差写出等差数列的通项公式,运用通项公式求值,16、【解题分析】

作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,所以BE=CE.取BC中点F,连接EF,则EF⊥BC,EF=2,,四面体ABCD的体积,显然,当E在AD中点,即B是短轴端点时,BE有最大值为b=,所以.[评注]本题把椭圆拓展到空间,对缺少联想思维的考生打击甚大!当然,作为填空押轴题,区分度还是要的,不过,就抢分而言,胆大、灵活的考生也容易找到突破点:AB=BD(同时AC=CD),从而致命一击,逃出生天!三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;.【解题分析】

推出,从而平面,进而得出,再得出,从而平面,由此能证明平面平面;以为原点,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】解:证明:平面平面,,平面平面.平面,.在菱形中,,可知为等边三角形,为中点,.,平面.平面,平面平面.由知,平面,,,,两两垂直,以为原点,如图建立空间直角坐标系.设,则,,,,.设为平面的法向量,由可得,取,同理可求平面的法向量,,即二面角的余弦值等于.【题目点拨】本题考查面面垂直的证明,线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查函数与方程思想,属于中档题.18、(2)见解析(2);(3)见解析.【解题分析】

分析:(2)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线FG方向向量数量积不为零,可得结论.详解:(Ⅰ)在三棱柱ABC-A2B2C2中,∵CC2⊥平面ABC,∴四边形A2ACC2为矩形.又E,F分别为AC,A2C2的中点,∴AC⊥EF.∵AB=BC.∴AC⊥BE,∴AC⊥平面BEF.(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC2.又CC2⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-2,0,0),D(2,0,2),F(0,0,2),G(0,2,2).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-2,c=-4,∴平面BCD的法向量,又∵平面CDC2的法向量为,∴.由图可得二面角B-CD-C2为钝角,所以二面角B-CD-C2的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,2),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(2)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19、(1)见解析;(2).【解题分析】

(1)利用列联表求得的观测值,即可判断.(2)设2名女员工中实得计件工资不少于3100元的人数为,1名男员工中实得计件工资在3100元以及以上的人数为,则,,根据X、Y的相应取值求得Z的相应取值时的概率,列出分布列,利用期望公式求得期望.【题目详解】(1)非“生产能手”“生产能手”合计男员工48250女员工42850合计9010100因为的观测值,所以有的把握认为“生产能手”与性别有关.(2)当员工每月完成合格产品的件数为3000件时,得计件工资为元,由统计数据可知,男员工实得计件工资不少于3100元的概率为,女员工实得计件工资不少于3100元的概率为,设2名女员工中实得计件工资不少于3100元的人数为,1名男员工中实得计件工资在3100元以及以上的人数为,则,,的所有可能取值为,,,,,,,,所以的分布列为0123故.【题目点拨】本题考查了独立性检验的应用问题,考查了二项分布及期望的求法,考查转化思想以及计算能力.20、(1).(2),.【解题分析】分析:(1)对函数求导,指接代入x=1即可;(2)将参数值代入,对函数求导,研究函数的单调性得到最值.详解:(1)(2)解:当时,令即解得:或是得极值点因为不在所求范围内,故舍去,点睛:这个题目考查的是函数单调性的研究和函数值域.研究函数单调性的方法有:定义法,求导法,复合函数单调性的判断方法,即同增异减,其中前两种方法也可以用于证明单调性,在解决函数问题时需要格外注意函数的定义域.21、(1)8;(2)①分布列见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论