四川省重点中学2024届数学高二第二学期期末质量跟踪监视试题含解析_第1页
四川省重点中学2024届数学高二第二学期期末质量跟踪监视试题含解析_第2页
四川省重点中学2024届数学高二第二学期期末质量跟踪监视试题含解析_第3页
四川省重点中学2024届数学高二第二学期期末质量跟踪监视试题含解析_第4页
四川省重点中学2024届数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省重点中学2024届数学高二第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个2.设双曲线C:的一个顶点坐标为(2,0),则双曲线C的方程是()A. B. C. D.3.已知a=tan(-π5)A.a>b>c B.c>b>aC.c>a>b D.b>c>a4.设,则“”是“”的()A.充分不必要条件 B.必要条件C.充分条件 D.既不充分也不必要条件5.已知曲线的参数方程为:,且点在曲线上,则的取值范围是()A. B. C. D.6.某人射击一次命中目标的概率为,则此人射击6次,3次命中且恰有2次连续命中的概率为()A. B. C. D.7.设集合,若,则()A. B. C. D.8.已知过点作曲线的切线有且仅有1条,则实数的取值是()A.0 B.4 C.0或-4 D.0或49.计算的值是()A.72 B.102 C.5070 D.510010.已知双曲线:1,左右焦点分别为,,过的直线交双曲线左支于,两点,则的最小值为()A. B.11 C.12 D.1611.已知一个等比数列,这个数列,且所有项的积为243,则该数列的项数为()A.9 B.10 C.11 D.1212.将函数的图象向左平移个单位长度后得到函数的图象,则的最小值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数在上是减函数,则实数的取值范围是______.14.《九章算术》卷五《商功》中有如下叙述“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈“刍甍”指的是底面为矩形的对称型屋脊状的几何体,“下广三丈”是指底面矩形宽三丈,“袤四丈”是指底面矩形长四丈,“上袤二丈”是指脊长二丈,“无宽”是指脊无宽度,“高一丈”是指几何体的高为一丈.现有一个刍甍如图所示,下广三丈,袤四丈,上袤三丈,无广,高二丈,则该刍甍的外接球的表面积为_______________平方丈.15.正弦曲线上一点,正弦曲线以点为切点的切线为直线,则直线的倾斜角的范围是______.16.在平面直角坐标系中,双曲线的渐近线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合=,集合=.(1)若,求;(2)若AB,求实数的取值范围.18.(12分)已知实数满足,其中实数满足.(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(12分)在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.经计算样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判①;②;③评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.(1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.20.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数),且直线与曲线交于两点,以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)已知点的极坐标为,求的值22.(10分)2名男生、4名女生排成一排,问:(1)男生平必须排在男生乙的左边(不一定相邻)的不同排法共有多少种?(2)4名女生不全相邻的不同排法共有多少种?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

试题分析:由图可知各月的平均最低气温都在0℃以上,A正确;由图可知在七月的平均温差大于,而一月的平均温差小于,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,C正确;由图可知平均最高气温高于20℃的月份有7,8两个月,所以不正确.故选D.【考点】统计图【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.2、D【解题分析】

利用双曲线的一个顶点坐标为,求得的值,即可求得双曲线的方程,得到答案.【题目详解】由题意,因为双曲线的一个顶点坐标为,所以,所以双曲线的标准方程为,故选D.【题目点拨】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了运算与求解能力,属于基础题.3、D【解题分析】

首先通过诱导公式,化简三个数,然后判断它们的正负性,最后利用商比法判断a,c的大小,最后选出正确答案.【题目详解】a=tan而ac=【题目点拨】本题考查了诱导公式、以及同角三角函数关系,以及商比法判断两数大小.在利用商比法时,要注意分母的正负性.4、A【解题分析】

分析两个命题的真假即得,即命题和.【题目详解】为真,但时.所以命题为假.故应为充分不必要条件.故选:A.【题目点拨】本题考查充分必要条件判断,充分必要条件实质上是判断相应命题的真假:为真,则是的充分条件,是的必要条件.5、C【解题分析】分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子,的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解.详解:∵即

其中由题意作出图形,,

令,则可看作圆上的动点到点的连线的斜率而相切时的斜率,

由于此时直线与圆相切,

在直角三角形中,,由图形知,的取值范围是则的取值范围是.

故选C.点睛:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思想解决代数式子的等价转化的思想.6、C【解题分析】

根据n次独立重复试验中恰好发生k次的概率,可得这名射手射击命中3次的概率,再根据相互独立事件的概率乘法运算求得结果.【题目详解】根据射手每次射击击中目标的概率是,且各次射击的结果互不影响,故此人射击6次,3次命中的概率为,恰有两次连续击中目标的概率为,故此人射击6次,3次命中且恰有2次连续命中的概率为.故选B【题目点拨】本题主要考查独立重复试验的概率问题,熟记概念和公式即可,属于常考题型.7、B【解题分析】分析:先根据得到=1即得a=2,再根据求出b的值,再求则.详解:因为,所以=1,所以a=2.又因为,所以b=1,所以Q={2,1},所以.故答案为:B.点睛:(1)本题主要考查集合的交集补集运算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答集合中的参数问题,要注意检验,一是检验是否满足集合元素的互异性,二是检验是否满足每一个条件.8、C【解题分析】

求出导函数,转化求解切线方程,通过方程有两个相等的解,推出结果即可.【题目详解】设切点为,且函数的导数,所以,则切线方程为,切线过点,代入得,所以,即方程有两个相等的解,则有,解得或,故选C.【题目点拨】本题主要考查了导数的几何意义的应用,其中解答中熟记导数的几何意义,求解曲线在某点处的切线方程是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.9、B【解题分析】

根据组合数和排列数计算公式,计算出表达式的值.【题目详解】依题意,原式,故选B.【题目点拨】本小题主要考查组合数和排列数的计算,属于基础题.10、B【解题分析】

根据双曲线的定义,得到,再根据对称性得到最小值,从而得到的最小值.【题目详解】根据双曲线的标准方程,得到,根据双曲线的定义可得,,所以得到,根据对称性可得当为双曲线的通径时,最小.此时,所以的最小值为.故选:B.【题目点拨】本题考查双曲线的定义求线段和的最小值,双曲线的通径,考查化归与转化思想,属于中档题.11、B【解题分析】

根据等比数列性质列式求解【题目详解】选B.【题目点拨】本题考查利用等比数列性质求值,考查基本分析求解能力,属基础题.12、C【解题分析】

根据题意得到变换后的函数解析式,利用诱导公式求得结果【题目详解】由题,向左平移不改变周期,故,平移得到,,当时,,故选C【题目点拨】本题考查函数的图象变换规律,利用诱导公式完成正、余弦型函数的转化二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

在上是减函数的等价条件是在恒成立,然后分离参数求最值即可.【题目详解】在上是减函数,在恒成立,即,在的最小值为,【题目点拨】本题主要考查利用导函数研究含参函数的单调性问题,把在上是减函数转化为在恒成立是解决本题的关键.14、【解题分析】

连结,交于,可得,即可确定点为刍甍的外接球的球心,利用球的表面积公式即可得到答案.【题目详解】如图,连结,,连结,交于,可得,由已知可得,所以点为刍甍的外接球的球心,该球的半径为,所以该刍甍的外接球的表面积为.故答案为:【题目点拨】本题主要考查多面体外接球表面积的求法,同时考查数形结合思想,属于中档题.15、【解题分析】

由可得,直线的斜率为,即可求出答案.【题目详解】由可得,切线为直线的斜率为:设直线的倾斜角,则且.所以故答案为:【题目点拨】本题考查求曲线上的切线的倾斜角的范围,属于中档题.16、.【解题分析】

直接利用双曲线的标准方程求出渐近线方程即可.【题目详解】解:由双曲线的标准方程可知,其渐近线为.故答案为:.【题目点拨】本题考查了双曲线渐近线的求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)先化简集合A,B,再求.(2)先化简集合A,B,再根据AB得到,解不等式得到实数的取值范围.详解:(1)当时,,解得.则.由,得.则.所以.(2)由,得.若AB,则解得.所以实数的取值范围是.点睛:(1)本题主要考查集合的运算和集合的关系,意在考查学生对这些知识的掌握水平和基本计算能力.(2)把分式不等式通过移项、通分、因式分解等化成的形式→化成不等式组→解不等式组得解集.18、(1);(2)【解题分析】

试题分析:(Ⅰ)解不等式可得,可求得时命题中的范围,若为真则说明命题均为真,应将命题中的范围取交集.(Ⅱ)若是的充分不必要条件,则命题的取值的集合是命题的取值集合的真子集.试题解析:解:(Ⅰ):,时,,:为真,(Ⅱ)若是的充分不必要条件,则∴解得.考点:1命题;2充分必要条件.19、(1)该份试卷应被评为合格试卷;(2)见解析【解题分析】

(1)根据频数分布表,计算,,的值,由此判断出“该份试卷应被评为合格试卷”.(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【题目详解】(1),,,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷.(2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3;;;.所以随机变的分布列为0123故.【题目点拨】本小题主要考查正态分布的概念,考查频率的计算,考查超几何分布的分布列以及数学期望的计算,属于中档题.20、(1)见解析;(2)见解析.【解题分析】分析:(1)先证明,再证明FG//平面PBD.(2)先证明平面,再证明BD⊥FG.详解:证明:(1)连结PE,因为G.、F为EC和PC的中点,,又平面,平面,所以平面(II)因为菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因为平面,平面,且,平面,平面,∴BD⊥FG.点睛:(1)本题主要考查空间位置关系的证明,意在考查学生对这些基础知识的掌握水平和空间想象转化能力.(2)证明空间位置关系,一般有几

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论