




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都嘉祥外国语学校高二数学第二学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.给出下列三个命题:①“若,则”为假命题;②若为真命题,则,均为真命题;③命题,则.其中正确的个数是()A.0 B.1 C.2 D.32.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数,组成复数,其中虚数有()A.30个 B.42个 C.36个 D.35个3.函数是定义在上的奇函数,当时,,则A. B. C. D.4.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.5.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.6.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A,B两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从A,B两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是()A. B. C. D.7.设,由不等式,,,…,类比推广到,则()A. B. C. D.8.已知,且恒成立,则实数的取值范围是()A. B. C. D.9.在极坐标系中,设圆与直线交于两点,则以线段为直径的圆的极坐标方程为()A. B.C. D.10.已知函数在上恒不大于0,则的最大值为()A. B. C.0 D.111.设6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144 C.576 D.32412.设,,若,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数与函数的图像有两个不同的交点,则实数b的取值范围是________;14.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示:学校高中高中高中高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在高中中抽取的学生人数为_______.15.若对任意实数,都有,则__________。16.出租车司机从南昌二中新校区到老校区(苏圃路)途中有个交通岗,假设他在各交通岗遇到红灯是相互独立的,并且概率都是则这位司机在途中遇到红灯数的期望为____.(用分数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.18.(12分)已知、为椭圆的左右焦点,是坐标原点,过作垂直于轴的直线交椭圆于.(1)求椭圆的方程;(2)若过点的直线与椭圆交于、两点,若,求直线的方程.19.(12分)已知椭圆过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)为椭圆的左、右顶点,直线与轴交于点,点是椭圆上异于的动点,直线分别交直线于两点.证明:恒为定值.20.(12分)(1)化简求值:(2)化简求值:+21.(12分)已知函数的最小正周期为.(1)当时,求函数的值域;(2)已知的内角,,对应的边分别为,,,若,且,,求的面积.22.(10分)已知数列的前项和满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:①若,则且,所以①正确;②若为真命题,则,应至少有一个是真命题,所以②错;③正确.考点:1.四种命题;2.命题的否定.2、C【解题分析】
解:∵a,b互不相等且为虚数,∴所有b只能从{1,2,3,4,5,6}中选一个有6种,a从剩余的6个选一个有6种,∴根据分步计数原理知虚数有6×6=36(个).故选C3、D【解题分析】
利用奇函数的性质求出的值.【题目详解】由题得,故答案为:D【题目点拨】(1)本题主要考查奇函数的性质,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)奇函数f(-x)=-f(x).4、C【解题分析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式5、D【解题分析】
先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【题目详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【题目点拨】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.6、B【解题分析】
由古典概型及其概率计算公式得:有人表现突出,则县选取的人表现不突出的概率是,得解.【题目详解】由已知有分别从,两个县的15人中各选1人,已知有人表现突出,则共有种不同的选法,又已知有人表现突出,且县选取的人表现不突出,则共有种不同的选法,已知有人表现突出,则县选取的人表现不突出的概率是.故选:B.【题目点拨】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.7、D【解题分析】由已知中不等式:归纳可得:不等式左边第一项为,第二项为,右边为,故第个不等式为:,故,故选D.【方法点睛】本题通过观察几组不等式,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.8、D【解题分析】
由题意可构造函数,由在上恒成立,分离参数并构造新的函数,利用导数判断其单调性并求得最小值,即可求出的取值范围.【题目详解】由,得恒成立,令,即,,则在上单调递减,所以在上恒成立,当时,成立,当时,等价于,令,则,所以在上单调递减,,即故选:D【题目点拨】本题主要考查不等式恒成立问题的解法,考查导数和构造函数的应用,考查学生分析转化能力和计算能力,属于中档题.9、A【解题分析】试题分析:以极点为坐标原点,极轴为轴的正半轴,建立直角坐标系,则由题意,得圆的直角坐标方程,直线的直角坐标方程.由,解得或,所以,从而以为直径的圆的直角坐标方程为,即.将其化为极坐标方程为:,即故选A.考点:简单曲线的极坐标方程.10、A【解题分析】
先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【题目详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即.设,则.因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.【题目点拨】本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.11、C【解题分析】
先求出6人站成一排,有多少种排法,再计算把甲、乙、丙3个人捆绑在一起,再跟剩下的3人排列,有多少种排法,这样就可以用减法求出甲、乙、丙3个人不能都站在一起的排法种数.【题目详解】求出6人站成一排,有种排法,把甲、乙、丙3个人捆绑在一起,再跟剩下的3人排列,有种排法,因此甲、乙、丙3个人不能都站在一起的排法种数为,故本题选C.【题目点拨】本题考查了全排列、捆绑法,考查了数学运算能力.12、C【解题分析】
分别求解出集合和,根据交集的结果可确定的范围.【题目详解】,本题正确选项:【题目点拨】本题考查根据交集的结果求解参数范围的问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
作出函数的图象和直线,由图形观察可知它们有两交点的情形。【题目详解】作出函数的图象和直线,如图,当直线过点时,,当直线与函数图象相切时,,,,(舍去),∴函数与函数的图像有两个不同的交点时。故答案为:【题目点拨】本题考查直线与函数图象交点个数问题,解题时用数形结合思想,即作出函数图象(半个椭圆)及直线当平移直线时观察它与函数图象的交点情况.本题解题时要特别注意函数图象只是椭圆的上半部分,不能误认为是整个椭圆,那就会得出错误结论.14、24【解题分析】
计算出高中人数占总人数的比例,乘以得到在高中抽取的学生人数.【题目详解】应在高中抽取的学生人数为.【题目点拨】本小题主要考查分层抽样,考查频率的计算,属于基础题.15、6【解题分析】
将原式变为,从而可得展开式的通项,令可求得结果.【题目详解】由题意得:则展开式通项为:当,即时,本题正确结果:【题目点拨】本题考查利用二项式定理求解指定项的系数的问题,关键是能够构造出合适的形式来进行展开.16、【解题分析】
遇到红灯相互独立且概率相同可知,根据二项分布数学期望求解公式求得结果.【题目详解】由题意可知,司机在途中遇到红灯数服从于二项分布,即期望本题正确结果:【题目点拨】本题考查服从于二项分布的随机变量的数学期望的求解,考查对于二项分布数学期望计算公式的掌握,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.55(2)【解题分析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.18、(1);(2)或【解题分析】
(1)根据点坐标,结合,求得的值,进而求得椭圆的方程.(2)当轴时,求得两点的坐标,计算出.当不垂直轴时,设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,由列方程,解方程求得直线的斜率,进而求得直线的方程.【题目详解】(1)由于轴,且,所以,解得,所以椭圆方程为.(2)设.当轴时,,,不符合题意.当不垂直轴时,设直线的方程为,代入椭圆方程并化简得,所以,由于,所以,即,所以,解得.所以直线的方程为或.【题目点拨】本小题主要考查椭圆标准方程的求法,考查直线和椭圆相交交点坐标的求法,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.19、(Ⅰ).(Ⅱ)为定值.证明见解析.【解题分析】本试题主要是考出了椭圆方程的求解,椭圆的几何性质,直线与椭圆的位置关系的运用的综合考查,体现了运用代数的方法解决解析几何的本质的运用.(1)首先根据题意的几何性质来表示得到关于a,b,c的关系式,从而得到其椭圆的方程.(2设出直线方程,设点P的坐标,点斜式得到AP的方程,然后联立方程组,可知借助于韦达定理表示出长度,进而证明为定值.(Ⅰ)解:由题意可知,,,解得.…………4分所以椭圆的方程为.…………5分(Ⅱ)证明:由(Ⅰ)可知,,.设,依题意,于是直线的方程为,令,则.即.…………7分又直线的方程为,令,则,即.…………9分…………11分又在上,所以,即,代入上式,得,所以为定值.…………12分20、(1)1,(2)【解题分析】
(1)利用倍角公式、同角三角函数基本关系式及诱导公式化简求值;(2)利用同角三角函数基本关系式、诱导公式及三角函数的和差化积化简求值.【题目详解】(1)===;(2)+=+==(﹣)==.【题目点拨】本题考查三角函数的恒等变换及化简求值,考查诱导公式及同角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自行车轮胎性能测试与选型考核试卷
- 节庆用品制作工艺考核试卷
- 能源回收系统施工考核试卷
- 玩具设计中的安全性测试与评估考核试卷
- 药品代购物流安全补充条款
- 智能仓储货架安装与仓储设备维护服务合同
- 知识产权转让与知识产权运营管理合同
- 版权运营内容审核补充协议
- 电商仓储物流安全监管及应急预案合同
- 跨国集团中国区供应链总监任职聘用协议书
- 2024年民政局离婚协议书样板
- XX医院抗菌药物临床应用监督管理机制+预警机制
- 临湘事业单位统一招聘考试真题
- 2024年全国执业兽医考试真题及答案解析
- 2024年湖南省长沙市中考地理试卷真题(含答案解析)
- 《中国健康成年人身体活动能量消耗参考值》(编制说明)
- 潮健身let's dance智慧树知到期末考试答案章节答案2024年广西师范大学
- 2《归去来兮辞并序》公开课一等奖创新教学设计统编版高中语文选择性必修下册
- 法理斗争1全文
- 医疗美容诊所规章制度上墙
- 2024年山东省青岛市城阳区中考生物模拟试卷
评论
0/150
提交评论