




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省赣州市南康中学数学高二下期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知离散型随机变量的分布列为表格所示,则随机变量的均值为()0123A. B. C. D.2.命题“对任意实数,关于的不等式恒成立”为真命题的一个必要不充分条件是A. B. C. D.3.某县城中学安排4位教师去3所不同的村小支教,每位教师只能支教一所村小,且每所村小有老师支教.甲老师主动要求去最偏远的村小A,则不同的安排有()A.6 B.12 C.18 D.244.甲乙丙丁4名师范院校的大学生分配至3所学校实习,每所学校至少分配一名大学生,且甲、乙两人不能分配在同一所学校,则不同分配方法数为()A.30 B.42 C.50 D.585.下列函数中,既是偶函数,又在区间上单调递增的是()A. B. C. D.6.若角是第四象限角,满足,则()A. B. C. D.7.小明同学在做市场调查时得到如下样本数据13610842他由此得到回归直线的方程为,则下列说法正确的是()①变量与线性负相关②当时可以估计③④变量与之间是函数关系A.① B.①② C.①②③ D.①②③④8.正方体中,直线与平面所成角正弦值为()A. B. C. D.9.已知函数与的图象如图所示,则函数(其中为自然对数的底数)的单调递减区间为()A. B., C. D.,10.设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是()A. B. C. D.11.已知抛物线上一动点到其准线与到点M(0,4)的距离之和的最小值为,F是抛物线的焦点,是坐标原点,则的内切圆半径为A. B. C. D.12.对于两个平面和两条直线,下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.已知、满足组合数方程,则的最大值是_____________.14.正项等差数列的前n项和为,已知,且,则__________.15.若,则____.16.设空间向量,,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知F是椭圆的右焦点,过F的直线l与椭圆相交于,,两点.(1)若,求弦的长;(2)O为坐标原点,,满足,求直线l的方程.18.(12分)已知函数.(Ⅰ)若函数在处取得极值,求的值;(Ⅱ)设,若函数在定义域上为单调增函数,求的最大整数值.19.(12分)如图,已知三点,,在抛物线上,点,关于轴对称(点在第一象限),直线过抛物线的焦点.(Ⅰ)若的重心为,求直线的方程;(Ⅱ)设,的面积分别为,求的最小值.20.(12分)设函数,,,其中是的导函数.(1)令,,,求的表达式;(2)若恒成立,求实数的取值范围.21.(12分)已知椭圆的离心率为,,分别为椭圆的左、右焦点,点在椭圆上.(1)求的方程;(2)若直线与椭圆相交于,两点,试问:在轴上是否在点,当变化时,总有?若存在求出点的坐标,若不存在,请说明理由.22.(10分)在创建“全国文明卫生城市”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的人的得分(满分100分)统计结果如下表所示:组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与均值.附:参考数据与公式若,则=0.9544,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:利用离散型随机变量分布列的性质求得到,进而得到随机变量的均值详解:由已知得,解得:∴E(X)=故选:C点睛:本题考查离散型随机变量的数学期望的求法,考查离散型随机变量的基本性质,是基础题.2、B【解题分析】
根据题意可知,利用参数分离的方法求出使命题“对任意实数,关于的不等式恒成立”为真命题的的取值范围,的取值范围构成的集合应为正确选项的真子集,从而推出正确结果.【题目详解】命题“对任意实数,关于的不等式恒成立”为真命题根据选项满足是的必要不充分条件只有,故答案选B.【题目点拨】本题主要考查了简单的不等式恒成立问题以及求一个命题的必要不充分条件.3、B【解题分析】
按照村小A安排一个人和安排两个人两种情况分类讨论,按先分组后排序的方法,计算出不同的安排总数.【题目详解】村小A安排一人,则有;村小A若安排2人,则有.故共有.选B.【题目点拨】本小题主要考查分类加法计算原理,考查简单的排列组合计算问题,属于基础题.4、A【解题分析】
根据题意将4人分成3组,再进行排列,两步完成.【题目详解】第一步,将甲乙丙丁4名同学分成3组,甲、乙两人不在同一组,有5种分法第二步,将3组同学分配到3所学校,有种分法所以共有种分配方法故选:A【题目点拨】解决分组分配问题的基本指导思想是先分组,后分配.5、D【解题分析】分析:根据函数奇偶性和单调性的定义和性质,对选项中的函数逐一验证判断即可.详解:四个选项中的函数都是偶函数,在上三个函数在上都递减,不符合题意,在上递增的只有,而故选D.点睛:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质,意在考查综合应用所学知识解决问题的能力.6、B【解题分析】
由题意利用任意角同角三角函数的基本关系,求得的值.【题目详解】解:∴角满足,平方可得1+sin2,∴sin2,故选B.【题目点拨】本题主要考查同角三角函数的基本关系,属于基础题.7、C【解题分析】
根据数据和回归方程对每一个选项逐一判断得到答案.【题目详解】①变量与线性负相关,正确②将代入回归方程,得到,正确③将代入回归方程,解得,正确④变量与之间是相关关系,不是函数关系,错误答案为C【题目点拨】本题考查了回归方程的相关知识,其中中心点一定在回归方程上是同学容易遗忘的知识点.8、C【解题分析】
作出相关图形,设正方体边长为1,求出与平面所成角正弦值即为答案.【题目详解】如图所示,正方体中,直线与平行,则直线与平面所成角正弦值即为与平面所成角正弦值.因为为等边三角形,则在平面即为的中心,则为与平面所成角.可设正方体边长为1,显然,因此,则,故答案选C.【题目点拨】本题主要考查线面所成角的正弦值,意在考查学生的转化能力,计算能力和空间想象能力.9、D【解题分析】分析:结合函数的图象求出成立的的取值范围,即可得到结论.详解:结合函数的图象可知:和时,,又由,则,令,解得,所以函数的递减区间为,故选D.点睛:本题主要考查了导数的四则运算,以及利用导数研究函数的单调性,求解单调区间,其中结合图象,得到,进而得到的解集是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.10、B【解题分析】
利用函数的定义即可得到结果.【题目详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B.【题目点拨】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).11、D【解题分析】
由抛物线的定义将到准线的距离转化为到焦点的距离,到其准线与到点M(0,4)的距离之和的最小值,也即为最小,当三点共线时取最小值.所以,解得,由内切圆的面积公式,解得.故选D.12、D【解题分析】
根据线面平行垂直的位置关系判断.【题目详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确.故选D.【题目点拨】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由组合数的性质得出或,然后利用二次函数的性质或基本不等式求出的最大值,并比较大小可得出结论.【题目详解】、满足组合数方程,或,当时,则;当时,.因此,当时,取得最大值.故答案为:.【题目点拨】本题考查组合数基本性质的应用,同时也考查了两数乘积最大值的计算,考查了二次函数的基本性质的应用以及基本不等式的应用,考查运算求解能力,属于中等题.14、2【解题分析】
由等差数列的通项公式求出公差,再利用等差数列前项和的公式,即可求出的值【题目详解】在等差数列中,所以,解得或(舍去).设的公差为,故,即.因为,所以,故,或(舍去).【题目点拨】本题考查等差数列通项公式与前项和的公式,属于基础题。15、【解题分析】
通过,即可求出的值,通过,即可求出的值,最终可求出的值.【题目详解】令,可得令,可得【题目点拨】本题通过赋值法来研究二项展开式系数的和,是一道基础题.16、-2.【解题分析】分析:,利用向量共线定理即可得出结论详解:,,且即即m4,n2∴点晴:本题主要考察空间向量的平行,注意熟记平面向量平行垂直的计算,空间向量的平行垂直的计算三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)根据直线和椭圆的位置关系,以及弦长公式即可求出;(2)根据向量的数量积和三角形的面积公式,弦长公式以及点到直线的距离,即可求出.【题目详解】(1)F是椭圆的右焦点,即,则,当直线的斜率存在时,设直线AB的方程为代入椭圆方程中,可得,解得..(2).当直线的斜率存在时,设直线的方程为,代入椭圆方程中,可得,点到直线的距离为,解得.直线的方程为;当直线的斜率不存在时,则直线方程为,此时,,不满足题意.综上,直线的方程为.【题目点拨】本题考查考查了弦长公式,点到直线的距离公式,三角形面积公式在解决直线和椭圆关系中的应用,考查学生的计算求解能力,难度一般.18、(1);(2)的最大整数值为2.【解题分析】分析:(1)先求导数,再根据根据极值定义得0,解得的值,最后列表验证.(2)先转化为恒成立,再利用结论(需证明),得,可得当时,恒成立;最后举反例说明当时,,即不恒成立.详解:(Ⅰ),若函数在处取得极值,则,解得.经检验,当时,函数在处取得极值.综上,.(Ⅱ)由题意知,,.若函数在定义域上为单调增函数,则恒成立.先证明.设,则.则函数在上单调递减,在上单调递增.所以,即.同理,可证,所以,所以.当时,恒成立;当时,,即不恒成立.综上所述,的最大整数值为2.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,即转化为方程或不等式解的问题(有解,恒成立,无解等),而不等式有解或恒成立问题,又可通过适当的变量分离转化为对应函数最值问题.19、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)设A,P,Q三点的坐标,将重心表示出来,且A,P,Q在抛物线上,可解得A,P两点坐标,进而求得直线AP;(Ⅱ)设直线PQ和直线AP,进而用横坐标表示出,讨论求得最小值。【题目详解】(Ⅰ)设,,则,所以,所以,所以(Ⅱ)设由得所以即又设由得,所以所以所以即过定点所以所以当且仅当时等号成立所以的最小值为【题目点拨】本题主要考查抛物线的方程与性质、直线与抛物线的位置关系以及圆锥曲线中的最值问题,属于抛物线的综合题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.20、(1);(2).【解题分析】分析:(1)求出的解析式,依次计算即可得出猜想;
(2)已知恒成立,即恒成立.设(x≥0),则φ′(x)==-=,对进行讨论,求出的最小值,令恒成立即可;详解:由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得gn(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即gk(x)=.那么,当n=k+1时,gk+1(x)=g(gk(x))==,即结论成立.由①②可知,结论对n∈N+成立.所以gn(x)=.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),则φ′(x)==-=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国人造大理石和石英石行业发展概况与竞争格局研究报告
- 2025至2030年中国自动化立体车库行业投资前景及策略咨询报告
- 马的解剖生理课件
- 2025届新疆维吾尔巴音郭楞蒙古自治州和静县三年级数学第一学期期末学业水平测试试题含解析
- 股权管理学课件
- 工程项目的多维度评估试题及答案
- 水利水电工程前沿动态试题及答案
- 2025年市政工程绩效评价试题及答案
- 2025年经济师行业前景展望试题及答案
- 工程项目管理法规试题及答案
- (二模)保定市2025年高三第二次模拟考试地理试卷(含答案解析)
- 足浴店员工涉黄合同协议
- 2023年1月浙江高考英语试题(含答案解析)
- 应用文写作-介绍智能校园图书馆的英文发言稿+讲义-2025届吉林省长春市高三下学期质量监测(三)英语试题
- 2025-2030中国叶黄素行业市场发展现状及竞争格局与投资发展研究报告
- 非全日制劳动合同协议
- 创新工程实践智慧树知到期末考试答案章节答案2024年北京大学等跨校共建
- 小小科学家《生物》模拟试卷A(附答案)
- 切尔诺贝利核事故永远不能忘却的事故(课堂PPT)
- 安装调试培训及验收方案
- 劳动合同法培训ppt课件
评论
0/150
提交评论