2024届贵州省剑河民族中学数学高二下期末考试模拟试题含解析_第1页
2024届贵州省剑河民族中学数学高二下期末考试模拟试题含解析_第2页
2024届贵州省剑河民族中学数学高二下期末考试模拟试题含解析_第3页
2024届贵州省剑河民族中学数学高二下期末考试模拟试题含解析_第4页
2024届贵州省剑河民族中学数学高二下期末考试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省剑河民族中学数学高二下期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若函数的图象与轴的交点个数不少于2个,则实数的取值范围是()A. B.C. D.2.用数学归纳法证明时,由时的假设到证明时,等式左边应添加的式子是()A. B.C. D.3.对任意非零实数,若※的运算原理如图所示,则※=()A.1 B.2 C.3 D.44.二项式展开式中的常数项为()A. B.C. D.5.从图示中的长方形区域内任取一点,则点取自图中阴影部分的概率为()A. B.C. D.6.已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:x+y-6≤0x-y+4≥0y≥0A.-∞,-73∪75,+∞7.设函数在上可导,其导函数为,且函数在处取得极大值,则函数的图象可能是A. B.C. D.8.在二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;在三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=4A.4πr4 B.3πr49.命题“”的否定为()A. B.C. D.10.下列函数中,既是偶函数,又是在区间上单调递减的函数为()A. B. C. D.11.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的体积为()A. B.C. D.12.已知曲线在点处的切线与直线垂直,则实数的值为()A.-4 B.-1 C.1 D.4二、填空题:本题共4小题,每小题5分,共20分。13.若直线与圆相交于P.Q两点,且∠POQ=120°(其中O为原点),则的值为________.14.在平面直角坐标系中,直线与抛物线所围成的封闭图形的面积为().15.已知函数,若存在,使得,则实数的取值范围__________.16.已知抛物线的焦点为,准线为,过点的直线交拋物线于,两点,过点作准线的垂线,垂足为,当点坐标为时,为正三角形,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校位同学的数学与英语成绩如下表所示:学号数学成绩英语成绩学号数学成绩英语成绩将这位同学的两科成绩绘制成散点图如下:(1)根据该校以往的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩为.考试结束后学校经过调查发现学号为的同学与学号为的同学(分别对应散点图中的、)在英语考试中作弊,故将两位同学的两科成绩取消,取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;(2)取消两位作弊同学的两科成绩后,求数学成绩与英语成绩的线性回归方程,并据此估计本次英语考试学号为的同学如果没有作弊的英语成绩(结果保留整数).附:位同学的两科成绩的参考数据:,.参考公式:,.18.(12分)设函数过点.(Ⅰ)求函数的极大值和极小值.(Ⅱ)求函数在上的最大值和最小值.19.(12分)已知椭圆:的离心率为,焦距为.(1)求的方程;(2)若斜率为的直线与椭圆交于,两点(点,均在第一象限),为坐标原点,证明:直线,,的斜率依次成等比数列.20.(12分)甲、乙两人进行某项对抗性游戏,采用“七局四胜”制,即先赢四局者为胜,若甲、乙两人水平相当,且已知甲先赢了前两局.(Ⅰ)求乙取胜的概率;(Ⅱ)记比赛局数为X,求X的分布列及数学期望E(X).21.(12分)设函数,曲线通过点,且在点处的切线垂直于轴.(1)用分别表示和;(2)当取得最小值时,求函数的单调区间.22.(10分)某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:售出水量(单位:箱)76656收入(单位:元)165142148125150学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.(1)若售出水量箱数与成线性相关,则某天售出9箱水时,预计收入为多少元?(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望.附:回归直线方程,其中,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据的图象与轴的交点个数不少于2个,可得函数的图象与的交点个数不少于2个,在同一坐标系中画出两个函数图象,结合图象即可得到m的取值范围.详解:的图象与轴的交点个数不少于2个,函数的图象与函数的图象的交点个数不少于2个,函数,时,函数为指数函数,过点,时,函数,为对称轴,开口向下的二次函数.,为过定点的一条直线.在同一坐标系中,画出两函数图象,如图所示.(1)当时,①当过点时,两函数图象有两个交点,将点代入直线方程,解得.②当与相切时,两函数图象有两个交点.联立,整理得则,解得,(舍)如图当,两函数图象的交点个数不少于2个.(2)当时,易得直线与函数必有一个交点如图当直线与相切时有另一个交点设切点为,,切线的斜率,切线方程为切线与直线重合,即点在切线上.,解得由图可知,当,两函数图象的交点个数不少于2个.综上,实数的取值范围是故选C.点睛:本题考查函数零点问题,考查数形结合思想、转化思想及分类讨论的思想,具有一定的难度.利用函数零点的情况,求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解(2)分离参数后转化为函数的值域(最值)问题求解(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.2、B【解题分析】因为当时,等式的左边是,所以当时,等式的左边是,多增加了,应选答案B.点睛:解答本题的关键是搞清楚当时,等式的左边的结构形式,当时,等式的左边的结构形式是,最终确定添加的项是什么,使得问题获解.3、A【解题分析】

分析:由程序框图可知,该程序的作用是计算分段函数函数值,由分段函数的解析式计算即可得结论.详解:由程序框图可知,该程序的作用是计算※函数值,※※因为,故选A.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.4、B【解题分析】

求出二项展开式的通项,使得的指数为,即可得出常数项.【题目详解】通项为常数项为故选:B【题目点拨】本题主要考查了利用二项式定理求常数项,属于基础题.5、C【解题分析】

先利用定积分公式计算出阴影部分区域的面积,并计算出长方形区域的面积,然后利用几何概型的概率计算公式可得出答案.【题目详解】图中阴影部分的面积为,长方形区域的面积为1×3=3,因此,点M取自图中阴影部分的概率为.故选C.【题目点拨】本题考查定积分的几何意义,关键是找出被积函数与被积区间,属于基础题.6、A【解题分析】

分析:画出可行域,由可行域结合圆C与x轴相切,得到b=1且-3≤a≤5,从而可得结果.详解:画出可行域如图,由圆的标准方程可得圆心C(a,b),半径为1因为圆C与x轴相切,所以b=1,直线y=1分别与直线x+y-6=0与x-y+4=0交于点B5,1所以-3≤a≤5,圆心C(a,b)与点(2,8-3≤a<2时,k∈72<a≤5时k∈-所以圆心C(a,b)与点(2,8)连线斜率的取值范围是-点睛:本题主要考查可行域、含参数目标函数最优解,属于中档题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度,此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.7、D【解题分析】

因为-2为极值点且为极大值点,故在-2的左侧附近>0,-2的右侧<0,所以当x>-2且在-2的右侧附近时,排除BC,当x<-2且在-2的左侧附近时,,排除AC,故选D8、B【解题分析】

根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到W'【题目详解】由题知,S'=l,V'=S所以W=3πr4,故选【题目点拨】本题主要考查学生的归纳和类比推理能力。9、C【解题分析】

利用全称命题的否定是特称命题写出结果即可.【题目详解】解:因为全称命题的否定是特称命题,所以,命题:“,”的否定为,故选:C.【题目点拨】本题考查命题的否定,特称命题与全称命题的否定关系,是基本知识的考查.10、A【解题分析】本题考察函数的单调性与奇偶性由函数的奇偶性定义易得,,是偶函数,是奇函数是周期为的周期函数,单调区间为时,变形为,由于2>1,所以在区间上单调递增时,变形为,可看成的复合,易知为增函数,为减函数,所以在区间上单调递减的函数故选择A11、A【解题分析】

试题分析:由三视图可知该几何体的体积等于长方体体积和半个圆柱体积之和,.考点:三视图与体积.12、C【解题分析】

先求出在点处的切线斜率,然后利用两直线垂直的条件可求出的值.【题目详解】由题意,,,则曲线在点处的切线斜率为4,由于切线与直线垂直,则,解得.故选C.【题目点拨】本题考查了导数的几何意义,考查了两直线垂直的性质,考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

作出图形,由图可知,点P的坐标为,由此可得的值.【题目详解】作出图形,由图可知,点P的坐标为,所以直线的倾斜角或,所以.【题目点拨】本题主要考查了直线与圆的位置关系的应用,其中解答中正确作出图形,结合图形求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.14、C【解题分析】画出函数的图象,如图所示,由,解得,,所以.选.15、【解题分析】

令,令,应用导数研究得出函数的单调性,从而分别求出的最小值和的最大值,从而求得的范围,得到结果.【题目详解】由令,则对恒成立,所以在上递减,所以,令,则对恒成立,所以在上递增,所以,所以,故的取值范围是.【题目点拨】该题考查的是有关参数的取值范围的问题,在解题的过程中,涉及到的知识点有构造新函数,应用导数研究函数的单调性,求得函数的最值,结合条件,求得结果,将题的条件转化是解题的关键.16、2【解题分析】

设点在第一象限,根据题意可得直线的倾斜角为,过点作轴,垂足为,由抛物线的定义可得,,通过解直角三角形可得答案.【题目详解】设点在第一象限,过点作轴,垂足为,由为正三角形,可得直线的倾斜角为.由抛物线的定义可得,又,所以在中有:.即,解得:.故答案为:2【题目点拨】本题考查抛物线中过焦点的弦的性质,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)其余学生的数学平均分、英语平均分都为分;(2)数学成绩与英语成绩的线性回归方程,本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【解题分析】

(1)利用平均数的公式求出这名学生的数学成绩之和以及英语成绩之和,再减去、号学生的数学成绩和英语成绩,计算其余名学生的数学成绩平均分和英语成绩的平均分;(2)设取消的两位同学的两科成绩分别为、,根据题中数据计算出和,并代入最小二乘法公共计算出回归系数和,可得出回归方程,再将号学生的数学成绩代入回归直线方程可得出其英语成绩.【题目详解】(1)由题名学生的数学成绩之和为,英语成绩之和为,取消两位作弊同学的两科成绩后,其余名学生的数学成绩之和,其余名学生的英语成绩之和为.其余名学生的数学平均分,英语平均分都为;(2)不妨设取消的两位同学的两科成绩分别为、,由题,,,,数学成绩与英语成绩的线性回归方程.代入学号为的同学数学成绩得,本次英语考试学号为的同学如果没有作弊,他的英语成绩估计为分.【题目点拨】本题考查平均数的计算,同时也考查了回归直线方程的求解,解题的关键就是理解最小二乘法公式,考查计算能力,属于中等题.18、(Ⅰ)的极大值,极小值(Ⅱ)【解题分析】试题分析:(Ⅰ)由题意求得,根据导函数的符号判断出函数的单调性,结合单调性可得函数的极值情况.(Ⅱ)结合(Ⅰ)中的结论可知,函数在区间上单调递减,在区间上单调递增,故,再根据和的大小求出即可.试题解析:(Ⅰ)∵点在函数的图象上,∴,解得,∴,∴,当或时,,单调递增;当时,,单调递减.∴当时,有极大值,且极大值为,当时,有极小值,且极小值为.(Ⅱ)由(I)可得:函数在区间上单调递减,在区间上单调递增.∴,又,,∴.19、(1).(2)见解析.【解题分析】

(1)根据题中条件,得到,再由,求解,即可得出结果;(2)先设直线的方程为,,,联立直线与椭圆方程,结合判别式、韦达定理等,表示出,只需和相等,即可证明结论成立.【题目详解】(1)由题意可得,解得,又,所以椭圆方程为.(2)证明:设直线的方程为,,,由,消去,得则,且,故即直线,,的斜率依次成等比数列.【题目点拨】本题主要考查求椭圆的标准方程,以及椭圆的应用,熟记椭圆的标准方程以及椭圆的简单性质即可,属于常考题型.20、(I)316【解题分析】

(Ⅰ)乙取胜有两种情况一是乙连胜四局,二是第三局到第六局中乙胜三局,第七局乙胜,由互斥事件的概率公式与根据独立事件概率公式能求出乙胜概率;(Ⅱ)由题意得X=4,5,6,7,结合组合知识,利用独立事件概率公式及互斥事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X的数学期望E(X).【题目详解】(Ⅰ)乙取胜有两种情况一是乙连胜四局,其概率p1二是第三局到第六局中乙胜三局,第七局乙胜,其概率p2∴乙胜概率为p=p(Ⅱ)由题意得X=4,5,6,7,P(X=4)=(1P(X=5)=CP(X=6)=(1P(X=7)=C所以ξ的分布列为ξ4567P1111EX=(4+5+6+7)×1【题目点拨】本题主要考查互斥事件的概率公式、独立事件同时发生的概率公式以及离散

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论