




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届大理市重点中学数学高二下期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为两个随机事件,给出以下命题:(1)若为互斥事件,且,,则;(2)若,,,则为相互独立事件;(3)若,,,则为相互独立事件;(4)若,,,则为相互独立事件;(5)若,,,则为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.42.等于()A. B. C. D.3.将函数的图象向左平移个单位后得到函数的图象如图所示,则函数的解析式是()A.() B.()C.() D.()4.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与交于、两点,则等于()A. B. C. D.5.若不等式对任意的恒成立,则的取值范围是()A. B. C. D.6.已知O为坐标原点,点F1、F2分别为椭圆C:x24+y23=1的左、右焦点,A为椭圆C上的一点,且A.32 B.34 C.57.若函数,则()A. B. C. D.8.已知函数,函数有四个不同的零点、、、,且满足:,则的取值范围是()A. B. C. D.9.以下四个命题中,真命题的是()A.B.“对任意的”的否定是“存在”C.,函数都不是偶函数D.中,“”是“”的充要条件10.复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.假设如图所示的三角形数表的第行的第二个数为,则()A.2046 B.2416 C.2347 D.248612.设:实数,满足,且;:实数,满足;则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.一根木棍长为4,若将其任意锯为两段,则锯成的两段木棍的长度有一段大于3的概率为______.14.已知集合,集合,那么集合的子集个数为___个.15.已知随机变量,且,则__________.16.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆短轴长为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若,求随机变量X的分布列与均值.18.(12分)在中,角的对边分别.(1)求;(2)若,求的周长.19.(12分)某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:汽车行驶路线在不堵车的情况下到达城市乙所需时间(天)在堵车的情况下到达城市乙所需时间(天)堵车的概率运费(万元)公路1142公路2231(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?(注:毛收入=销售商支付给厂家的费用-运费).20.(12分)已知函数,.若不等式有解,求实数a的取值范围;2当时,函数的最小值为3,求实数a的值.21.(12分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若,且,,求22.(10分)如图所示,在三棱柱中,是边长为4的正方形,,.(l)求证:;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据互斥事件的加法公式,易判断(1)的正误;根据相互对立事件的概率和为1,结合相互独立事件的概率满足,可判断(2)、(3)、(4)、(5)的正误.【题目详解】若为互斥事件,且,则,故(1)正确;若则由相互独立事件乘法公式知为相互独立事件,故(2)正确;若,则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(3)正确;若,当为相互独立事件时,故(4)错误;若则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(5)正确.故选D.【题目点拨】本题考查互斥事件、对立事件和独立事件的概率,属于基础题.2、A【解题分析】
根据排列数的定义求解.【题目详解】,故选A.【题目点拨】本题考查排列数的定义.3、A【解题分析】设,由的图像可知,函数的周期为,所以,将代入得,所以,向右平移后得到.4、B【解题分析】
由题意可知曲线与交于原点和另外一点,设点为原点,点的极坐标为,联立两曲线的极坐标方程,解出的值,可得出,即可得出的值.【题目详解】易知,曲线与均过原点,设点为原点,点的极坐标为,联立曲线与的坐标方程,解得,因此,,故选:B.【题目点拨】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.5、B【解题分析】
不等式可整理为,然后转化为求函数y在(﹣∞,1)上的最小值即可,利用单调性可求最值.【题目详解】不等式,即不等式lglg3x﹣1,∴,整理可得,∵y在(﹣∞,1)上单调递减,∴∈(﹣∞,1),y1,∴要使原不等式恒成立,只需≤1,即的取值范围是(﹣∞,1].故选:B.【题目点拨】本题考查不等式恒成立问题、函数单调性,考查转化思想,考查学生灵活运用知识解决问题的能力.6、B【解题分析】
根据AF2⊥F1F2且O为F1【题目详解】如下图所示:由AF2⊥F1∵O为F1F2中点∴OB为ΔA又AF2本题正确选项:B【题目点拨】本题考查椭圆几何性质的应用,关键是能够熟练掌握椭圆通径长和对称性,属于基础题.7、A【解题分析】
首先计算,然后再计算的值.【题目详解】,.故选A.【题目点拨】本题考查了分段函数求值,属于计算题型.8、D【解题分析】
作出函数的图象,可得出当直线与函数的图象有四个交点时的取值范围,根据图象得出,,并求出实数的取值范围,将代数式转化为关于的函数,利用双勾函数的基本性质求出的取值范围.【题目详解】作出函数的图象如下图所示:由图象可知,当时,直线与函数的图象有四个交点,由于二次函数的图象关于直线对称,则,又,由题意可知,,,,可得,,由,即,解得.,令,则,由基本不等式得,当且仅当时,等号成立,当时,,当时,,所以,,因此,的取值范围是,故选:D.【题目点拨】本题考查函数零点的取值范围,解题时要充分利用图象的对称性以及对数的运算性质得出一些定值条件,并将所求代数式转化为以某个变量为自变量的函数,转化为函数值域求解,考查化归与转化思想、函数方程思想的应用,属于中等题.9、D【解题分析】
解:A.若sinx=tanx,则sinx=tanx,∵x∈(0,π),∴sinx≠0,则1,即cosx=1,∵x∈(0,π),∴cosx=1不成立,故∃x∈(0,π),使sinx=tanx错误,故A错误,B.“对任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1≤0”,故B错误,C.当θ时,f(x)=sin(2x+θ)=sin(2x)=cos2x为偶函数,故C错误,D.在△ABC中,C,则A+B,则由sinA+sinB=sin(B)+sin(A)=cosB+cosA,则必要性成立;∵sinA+sinB=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB,两边平方得sin2A﹣2sinAcosA+cos2A=sin2B﹣2sinBcosB+cos2B,∴1﹣2sinAcosA=1﹣2sinBcosB,∴sin2A=sin2B,则2A=2B或2A=π﹣2B,即A=B或A+B,当A=B时,sinA+sinB=cosA+cosB等价为2sinA=2cosA,∴tanA=1,即A=B,此时C,综上恒有C,即充分性成立,综上△ABC中,“sinA+sinB=cosA+cosB”是“C”的充要条件,故D正确,故选D.考点:全称命题的否定,充要条件等10、C【解题分析】
直接利用复数代数形式的运算法则化简,再利用复数的几何意义即可求出.【题目详解】,所以在复平面内,复数对应的点的坐标是,位于第三象限,故选C.【题目点拨】本题主要考查复数代数形式的四则运算法则的应用,以及复数的几何意义.11、B【解题分析】
由三角形数表特点可得,利用累加法可求得,进而得到结果.【题目详解】由三角形数表可知:,,,…,,,整理得:,则.故选:.【题目点拨】本题考查数列中的项的求解问题,关键是能够采用累加法准确求得数列的通项公式.12、A【解题分析】
利用充分必要性定义及不等式性质即可得到结果.【题目详解】当,且时,显然成立,故充分性具备;反之不然,比如:a=100,b=0.5满足,但推不出,且,故必要性不具备,所以是的充分不必要条件.故选A【题目点拨】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
试验的全部区域长度为4,基本事件的区域长度为2,代入几何概型概率公式即可得结果.【题目详解】设“长为4的木棍”对应区间,“锯成的两段木棍的长度有一段大于3”为事件,则满足的区间为或,根据几何概率的计算公式可得,.故答案为.【题目点拨】本题主要考查几何概型等基础知识,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.14、1.【解题分析】
可以求出集合M,N,求得并集中元素的个数,从而得出子集个数.【题目详解】∵M={﹣1,1},N={1,2};∴M∪N={﹣1,1,2};∴M∪N的子集个数为23=1个.故答案为:1.【题目点拨】本题考查描述法、列举法的定义,以及并集的运算,子集的定义,以及集合子集个数的求法.15、128【解题分析】分析:根据二项分布的期望公式,求得,再根据方差公式求得,再根据相应的方差公式求得结果.详解:随机变量,且,所以,且,解得,所以,所以,故答案是.点睛:该题考查的是有关二项分布的期望和方差的问题,在解题的过程中,注意对二项分布的期望和方差的公式要熟记,正确求解p的值是解题的关键.16、【解题分析】
由题意得到关于a,b的方程组,求解方程组即可确定椭圆的短轴长度.【题目详解】不妨设椭圆方程为:,由题意可得,解得,则椭圆的短轴长度为:.故答案为:.【题目点拨】本题主要考查椭圆的几何性质,方程的数学思想,椭圆短轴的定义与计算等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解题分析】
根据该毕业生得到面试的机会为0时的概率,求出乙、丙公司面试的概率,根据题意得到X的可能取值,结合变量对应的事件写出概率得出分布列及期望.【题目详解】∵P(X=0),∴,∴p,由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,P(X=1)P(X=2),P(X=3)=1,X0123P∴E(X),【题目点拨】本题考查离散型随机变量的分布列和期望,准确计算是关键,是一个基础题.18、(1);(2).【解题分析】
(1)由正弦定理,余弦定理可得cosA,结合范围A∈(0,π),可得A的值.(2)由已知利用三角形的内角和定理可求B,C的值,进而根据正弦定理可求a,c的值,即可得解△ABC的周长【题目详解】(1)根据.可得,即所以.又因为,所以.(2).所以.因为.所以.则的周长为.【题目点拨】本题主要考查了正弦定理,余弦定理,三角形的内角和定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.19、(1)分布列见解析,;(2)选择公路2运送啤酒有可能让啤酒厂获得的毛收入更多.【解题分析】
(1)若汽车走公路1,不堵车时啤酒厂获得的毛收人(万元),堵车时啤酒厂获得的毛收入(万元),然后列出分布列和求出(2)当时,由(1)知(万元),然后求出,比较二者的大小即可得出结论.【题目详解】解:(1)若汽车走公路1,不堵车时啤酒厂获得的毛收人(万元),堵车时啤酒厂获得的毛收入(万元),所以汽车走公路1时啤酒厂获得的毛收入X的分布列为4034∴.(2)当时,由(1)知(万元),当时,设汽车走公路2时啤酒厂获得的毛收入为Y,则不堵车时啤酒厂获得的毛收入9(万元),堵车时啤酒厂获得的毛收入(万元),∴汽车走公路2时啤酒厂获得的毛收入Y的分布列为3937∴(万元),由得选择公路2运送啤酒有可能让啤酒厂获得的毛收入更多.【题目点拨】本题考查的是随机变量的分布列和期望,较简单,属于基础题;由于文字太多,解答本题的关键是读懂题意.20、(Ⅰ)(Ⅱ).【解题分析】分析:(1)由绝对值的几何意义知,由不等式f(x)≤2﹣|x﹣1|有解,可得,即可求实数a的取值范围;(2)当a<2时,画出函数的图像,利用函数f(x)的最小值为3,求实数a的值.详解:(1)由题,即为.而由绝对值的几何意义知,由不等式有解,∴,即.实数的取值范围.(2)函数的零点为和,当时知.
如图可知在单调递减,在单调递增,,得(合题意),即.点睛:这个题目考查了含有绝对值的不等式的解法,绝对值三角不等式的应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑卒中急性期的护理
- 世界杯活动总结
- 输液反应的护理教学查房
- 中国小型振动筛行业市场前景预测及投资价值评估分析报告
- 《物联网运维与服务》课件 6.3-货物分拣管理系统AIoT平台虚拟机终端故障处理
- 工业机器人智能控制技术2025年产业政策与市场动态报告
- 中班爱清洁讲卫生
- 2025年饮料罐铝板相关项目实施方案
- 绿色建筑能效保证保险行业深度调研及发展项目商业计划书
- 金融数据加密企业制定与实施新质生产力项目商业计划书
- 八年级历史下册 第五单元 第15课《钢铁长城》教案 新人教版
- 集团公司人事检查人力资源检查项目表及评分标准
- DB12T 1339-2024 城镇社区公共服务设施规划设计指南
- 2024年秋新北师大版七年级上册数学教学课件 第五章 一元一次方程 第1节 认识方程
- 吉利工厂过程质量对标标准手册V4
- 2023-2024学年浙江省宁波市江北区七年级(下)期末数学试卷(含答案)
- 网课智慧树知道《人工智能引论(浙江大学)》章节测试答案
- 中考物理压强与浮力压轴题20道(解析版)
- 2024年江苏省镇江市丹阳市中考物理二模卷
- 标准吞咽功能评定量表
- MOOC 中国传统艺术-篆刻、书法、水墨画体验与欣赏-哈尔滨工业大学 中国大学慕课答案
评论
0/150
提交评论