吉林省长春市“BEST合作体”2024届数学高二下期末联考试题含解析_第1页
吉林省长春市“BEST合作体”2024届数学高二下期末联考试题含解析_第2页
吉林省长春市“BEST合作体”2024届数学高二下期末联考试题含解析_第3页
吉林省长春市“BEST合作体”2024届数学高二下期末联考试题含解析_第4页
吉林省长春市“BEST合作体”2024届数学高二下期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市“BEST合作体”2024届数学高二下期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二项式(ax-36)3(a>0)的展开式的第二项的系数为A.3B.73C.3或73D.32.已知,,,(e为自然对数的底)则a,b,c的大小关系为()A. B.C. D.3.已知函数的零点为,函数的零点为,则下列不等式中成立的是()A. B.C. D.4.已知双曲线方程为,它的一条渐近线与圆相切,则双曲线的离心率为()A. B. C. D.5.已知,,,若>恒成立,则实数m的取值范围是A.或 B.或C. D.6.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C. D.7.已知函数f(x)=2x-1,(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A. B. C. D.8.已知命题p:∃x0>0,使得(A.∀x≤0,总有(x+2)ex≥1 B.C.∀x>0,总有(x+2)ex≥1 D.9.设实数满足约束条件,则的最大值为()A. B.1 C.6 D.910.若a>b>c,ac<0,则下列不等式一定成立的是A.ab>0 B.bc<0 C.ab>ac D.b(a-c)>011.一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A. B. C. D.12.设函数的极小值为,则下列判断正确的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正三棱锥中,,,记二面角,的平面角依次为,,则______.14.设函数,.若,且的最小值为-1,则实数的值为__________.15.若的展开式中,奇数项的系数之和为-121,则n=___________。16.已知函数fx=x⋅lnx,且0<x1<x2,给出下列命题:①fx1-f三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设且,函数.(1)当时,求曲线在处切线的斜率;(2)求函数的极值点.18.(12分)已知二项式的展开式中各项的系数和为.(1)求;(2)求展开式中的常数项.19.(12分)将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为,第二次出的点数为,且已知关于、的方程组.(1)求此方程组有解的概率;(2)若记此方程组的解为,求且的概率.20.(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为,过点的直线的参数方程为(为参数).(Ⅰ)求直线的普通方程与曲线的直角坐标方程;(Ⅱ)若直线与曲线交于、两点,求的值,并求定点到,两点的距离之积.21.(12分)如图,已知单位圆上有四点,,,,其中,分别设的面积为和.(1)用表示和;(2)求的最大值及取最大值时的值.22.(10分)在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若,圆与直线交于两点,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:∵展开式的第二项的系数为-32,∴C31a2(-当a=1时,-2a考点:二项式定理、积分的运算.2、A【解题分析】

根据条件即可得出,a=log2e,b=ln2,c=log23,容易得出log23>log2e>1,ln2<1,从而得出a,b,c的大小关系.【题目详解】∵;∴;∵log23>log2e>log22=1,ln2<lne=1;∴c>a>b.故选:A.【题目点拨】本题考查指数式和对数式的互化,对数的换底公式,考查了利用对数函数的单调性比较大小的问题,属于基础题.3、C【解题分析】

根据零点存在性定理,可得,然后比较大小,利用函数的单调性,可得结果.【题目详解】由题意可知函数在上单调递增,,,∴函数的零点,又函数的零点,,故选:C【题目点拨】本题考查零点存在性定理以及利用函数的单调性比较式子大小,难点在于判断的范围,属基础题.4、A【解题分析】方法一:双曲线的渐近线方程为,则,圆的方程,圆心为,所以,化简可得,则离心率.方法二:因为焦点到渐近线的距离为,则有平行线的对应成比例可得知,即则离心率为.选A.5、C【解题分析】分析:用“1”的替换先解的最小值,再解的取值范围。详解:,所以的解集为,故选C点睛:已知二元一次方程,求二元一次分式结构的最值,用“1”的替换是均值不等式的应用,构造出的模型,再验证条件。6、D【解题分析】

先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【题目详解】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即,故选D.解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,为中点,,,,,又,两两垂直,,,,故选D.【题目点拨】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.7、C【解题分析】

对a分a=0,a<0和a>0讨论,a>0时分两种情况讨论,比较两个函数的值域的关系,即得实数a的取值范围.【题目详解】当a=0时,函数f(x)=2x-1的值域为[1,+∞),函数的值域为[0,++∞),满足题意.当a<0时,y=的值域为(2a,+∞),y=的值域为[a+2,-a+2],因为a+2-2a=2-a>0,所以a+2>2a,所以此时函数g(x)的值域为(2a,+∞),由题得2a<1,即a<,即a<0.当a>0时,y=的值域为(2a,+∞),y=的值域为[-a+2,a+2],当a≥时,-a+2≤2a,由题得.当0<a<时,-a+2>2a,由题得2a<1,所以a<.所以0<a<.综合得a的范围为a<或1≤a≤2,故选C.【题目点拨】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、C【解题分析】

原命题为特称命题,则其否定为全称命题,即可得到答案【题目详解】∵命题p:∃x0∴¬p:∀x>0,总有(x+2)故选C【题目点拨】本题主要考查的是命题及其关系,命题的否定是对命题结论的否定,属于基础题.9、D【解题分析】

作出不等式组表示的平面区域,作出目标函数对应的直线,结合图像求得结果【题目详解】解:画出实数满足约束条件表示的可行域,由得,则表示直线在轴上的截距,截距越大,越大,作出目标函数对应的直线由图可知将直线向上平移,经过点时,直线的截距最大,由,得点的坐标为所以的最大值为故选:D【题目点拨】此题考查画不等式组表示的平面区域,考查数形结合求函数的最值.10、C【解题分析】

取特殊值a=1,b=0,c=-1进行验证即可。【题目详解】取a=1,b=0,c=-1代入,排除A、B、D,故选:C。【题目点拨】本题考查不等式的基本性质,不等式的基本性质、特殊值法是两种常用方法,但在利用特殊值法时取特殊值时要全面。11、B【解题分析】

先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率.【题目详解】解:一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,1.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,1},{2,3},{2,4},{2,5},{2,1},{3,4},{3,5},{3,1},{4,5},{4,1},{5,1},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,1},{2,5},{2,1},{3,5},{3,1},{4,5},{4,1},{5,1}共9个,这2个球中有白球的概率是.故选B.【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.12、D【解题分析】

对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【题目详解】令,得,检验:当时,,当时,,所以的极小值点为,所以的极小值为,又.∵,∴,∴.选D.【题目点拨】本题考查利用导数判断单调性和极值的关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

作平面ABC,连接CO延长交AB于点D,连接可得D为AB的中点,,于是二面角的平面角为作,垂足为E点,连接BE,根据≌,可得可得为的平面角,利用余弦定理即可得出.【题目详解】如图所示,作平面ABC,连接CO延长交AB于点D,连接PD.则D为AB的中点,,.二面角的平面角为.,,,..作,垂足为E点,连接BE,≌,.为的平面角,..在中,..故答案为1.【题目点拨】本题主要考查了正三棱锥的性质、正三角形的性质、余弦定理、勾股定理、二面角、三角形全等,属于难题.14、2【解题分析】分析:先表示函数,再利用导数求函数最小值,最后根据的最小值为-1得实数的值.详解:因为,设,则所以因为,所以当时,;当时,;即当时,.点睛:两函数关系问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式或方程,从而求出参数的取值范围或值.15、5【解题分析】

令和,作和即可得到奇数项的系数和,从而构造出方程解得结果.【题目详解】令得:令得:奇数项的系数和为:,解得:本题正确结果:【题目点拨】本题考查二项式系数的性质应用问题,关键是采用赋值的方式快速得到系数和.16、②③【解题分析】

根据每一个问题构造相应的函数,利用导数研究函数的单调性,进而判断命题正误.【题目详解】∵f当0<x<1e时,f'(x)<0,当x>1e时,f'(x)>0,①令g(x)=f(x)-x=xlnx-x,则g'(x)=ln∴g(x)在(1,+∞)单调递增,当x2>x∴f(x2)-②令g(x)=f(x)x=lnx∵0<x1<x2③当lnx>-1时,则x>1e,∴f(x)在(∴x1f(∴x④令h(x)=f(x)+x=xlnx+x,则∴x∈(0,1e2)时,h'设x1,x2∈(0,∴x【题目点拨】证明函数不等式问题,经常与函数性质中的单调性有关.解决问题的关键在于构造什么样函数?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)见解析.【解题分析】试题分析:(1)由已知中函数,根据a=2,我们易求出f(3)及f′(3)的值,代入即可得到切线的斜率k=f′(3).(2)由已知我们易求出函数的导函数,令导函数值为0,我们则求出导函数的零点,根据m>0,我们可将函数的定义域分成若干个区间,分别在每个区间上讨论导函数的符号,即可得到函数函数f(x)的极值点.试题解析:(1)由已知得x>0.当a=2时,f′(x)=x-3+,f′(3)=,所以曲线y=f(x)在(3,f(3))处切线的斜率为.(2)f′(x)=x-(a+1)+==.由f′(x)=0,得x=1或x=a.①当0<a<1时,当x∈(0,a)时,f′(x)>0,函数f(x)单调递增;当x∈(a,1)时,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增.此时x=a时f(x)的极大值点,x=1是f(x)的极小值点.②当a>1时,当x∈(0,1)时,f′(x)>0,函数f(x)单调递增;当x∈(1,a)时,f′(x)<0,函数f(x)单调递减;当x∈(a,+∞)时,f′(x)>0,函数f(x)单调递增.此时x=1是f(x)的极大值点,x=a是f(x)的极小值点.综上,当0<a<1时,x=a是f(x)的极大值点,x=1是f(x)的极小值点;当a>1时,x=1是f(x)的极大值点,x=a是f(x)的极小值点.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值,属于中档题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值.18、(1)8;(2).【解题分析】

⑴观察可知,展开式中各项系数的和为,即,解出得到的值⑵利用二次展开式中的第项,即通项公式,将第一问的代入,并整理,令的次数为,解出,得到答案【题目详解】(1)由题意,得,即=256,解得n=8.(2)该二项展开式中的第项为Tr+1=,令=0,得r=2,此时,常数项为=28.【题目点拨】本题主要考的是利用赋值法解决展开式的系数和问题,考查了利用二次展开式的通项公式解决二次展开式的特定项问题。19、(1);(2).【解题分析】

(1)先根据方程组有解得关系,再确定取法种数,最后根据古典概型概率公式求结果;(2)先求方程组解,再根据解的情况得关系,进而确定取法种数,最后根据古典概型概率公式求结果.【题目详解】(1)因为方程组有解,所以而有这三种情况,所以所求概率为;(2)因为且,所以因此即有种情况,所以所求概率为;【题目点拨】本题考查古典概型概率以及二元一次方程组的解,考查综合分析求解能力,属中档题.20、(Ⅰ)直线的普通方程,曲线的直角坐标方程为;(Ⅱ).【解题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论