




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省赣榆县海头高级中学数学高二下期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设实数,满足不等式组则的最小值是()A. B. C. D.2.若直线l:过点,当取最小值时直线l的斜率为()A.2 B. C. D.23.已知有下列各式:,,成立,观察上面各式,按此规律若,则正数()A. B. C. D.4.已知数列满足,,,设为数列的前项之和,则()A. B. C. D.5.某学习小组有名男生和名女生,现从该小组中先后随机抽取两名同学进行成果展示,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率为()A. B. C. D.6.如图,可导函数在点处的切线方程为,设,为的导函数,则下列结论中正确的是()A.,是的极大值点B.,是的极小值点C.,不是的极值点D.,是是的极值点7.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.648.已知是空间中两条不同的直线,是两个不同的平面,有以下结论:①②③④.其中正确结论的个数是()A.0 B.1 C.2 D.39.证明等式时,某学生的证明过程如下(1)当n=1时,,等式成立;(2)假设时,等式成立,即,则当时,,所以当时,等式也成立,故原式成立.那么上述证明()A.过程全都正确 B.当n=1时验证不正确C.归纳假设不正确 D.从到的推理不正确10.某运动队有男运动员4名,女运动员3名,若选派2人外出参加比赛,且至少有1名女运动员入选,则不同的选法共有()A.6种 B.12种 C.15种 D.21种11.已知i是虚数单位,m,n∈R,且m+i=1+ni,则=()A.i B.1 C.-i D.-112.如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.将参数方程(为参数)化成普通方程为__________.14.椭圆的焦点坐标是__________.15.已知函数,若存在三个互不相等的实数,使得成立,则实数的取值范围是__________.16.已知一组数据,,,,的方差为,则数据2,2,2,2,2的方差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a(单位:万元)满足P=80++120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?18.(12分)已知,为抛物线上的相异两点,且.(1)若直线过,求的值;(2)若直线的垂直平分线交轴与点,求面积的最大值.19.(12分)已知函数.(1)若,证明:当时,;(2)若在有两个零点,求的取值范围.20.(12分)已知为圆上一动点,圆心关于轴的对称点为,点分别是线段上的点,且.(1)求点的轨迹方程;(2)直线与点的轨迹只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于两点,求面积的取值范围.21.(12分)已知复数(a,),(c,).(1)当,,,时,求,,;(2)根据(1)的计算结果猜想与的关系,并证明该关系的一般性22.(10分)已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
作出不等式组所表示的可行域,平移直线在轴上截距的变化,找到该直线在轴上的截距取得最小值时的最优解,再将最优解代入目标函数可得出答案.【题目详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,此时该直线在轴上的截距最小,取得最小值,即,故选B.【题目点拨】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线的思想,利用其在坐标轴上截距最值的思想找出最优来处理,考查数形结合思想,属于中等题.2、A【解题分析】
将点带入直线可得,利用均值不等式“1”的活用即可求解.【题目详解】因为直线过点,所以,即,所以当且仅当,即时取等号所以斜率,故选A【题目点拨】本题考查均值不等式的应用,考查计算化简的能力,属基础题.3、C【解题分析】
观察上面各式,,,,类比推理即可得到结果.【题目详解】由题,观察上面各式可得,,,则,所以,故选:C【题目点拨】本题考查类比推理,考查理解分析能力.4、A【解题分析】
由可知数列为等差数列且公差为,然后利用等差数列求和公式代入计算即可.【题目详解】由可知数列为等差数列且公差为,所以故选.【题目点拨】本题主要考查等差数列的概念及求和公式,属基础题.5、C【解题分析】
设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,由此利用条件概率计算公式能求出在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.【题目详解】设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.故选:C【题目点拨】本题考查了条件概率的求法、解题的关键是理解题干,并能分析出问题,属于基础题.6、B【解题分析】
由图判断函数的单调性,结合为在点P处的切线方程,则有,由此可判断极值情况.【题目详解】由题得,当时,单调递减,当时,单调递增,又,则有是的极小值点,故选B.【题目点拨】本题通过图象考查导数的几何意义、函数的单调性与极值,分析图象不难求解.7、A【解题分析】
分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8、B【解题分析】分析:根据直线与平面的位置关系的判定定理和性质定理,即可作出判定得到结论.详解:由题意,对于①中,若,则两平面可能是平行的,所以不正确;对于②中,若,只有当与相交时,才能得到,所以不正确;对于③中,若,根据线面垂直和面面垂直的判定定理,可得,所以是正确的;对于④中,若,所以是不正确的,综上可知,正确命题的个数只有一个,故选B.点睛:本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.9、A【解题分析】分析:由题意结合数学归纳法的证明方法考查所给的证明过程是否存在错误即可.详解:考查所给的证明过程:当时验证是正确的,归纳假设是正确的,从到的推理也是正确的,即证明过程中不存在任何的问题.本题选择A选项.点睛:本题主要考查数学归纳法的概念及其应用,意在考查学生的转化能力和计算求解能力.10、C【解题分析】
先求出所有的方法数,再求出没有女生入选的方法数,相减可得至少有1位女生入选的方法数.【题目详解】解:从3位女生,4位男生中选2人参加比赛,所有的方法有种,
其中没有女生入选的方法有种,
故至少有1位女生入选的方法有21−6=15种.
故选:C.【题目点拨】本题主要考查排列组合的简单应用,属于中档题.11、A【解题分析】
先根据复数相等得到的值,再利用复数的四则混合运算计算.【题目详解】因为,所以,则.故选A.【题目点拨】本题考查复数相等以及复数的四则混合运算,难度较易.对于复数的四则混合运算,分式类型的复数式子,采用分母实数化计算更加方便.12、B【解题分析】
由二倍角的正弦公式以及已知条件得出和的符号,由此得出角所在的象限.【题目详解】由于点位于第三象限,则,得,因此,角为第二象限角,故选B.【题目点拨】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
在参数方程中利用加减消元法或代入消元法消去参数,可将参数方程化为普通方程.【题目详解】由得,两式相加得,即,因此,将参数方程(为参数)化成普通方程为,故答案为.【题目点拨】本题考查参数方程与普通方程的互化,将直线的参数方程化普通方程,常见的有代入消元法和加减消元法,考查计算能力,属于基础题.14、【解题分析】
从椭圆方程中得出、的值,可得出的值,可得出椭圆的焦点坐标.【题目详解】由题意可得,,,因此,椭圆的焦点坐标是,故答案为.【题目点拨】本题考查椭圆焦点坐标的求解,解题时要从椭圆的标准方程中得出、、的值,同时也要确定焦点的位置,考查计算能力,属于基础题.15、【解题分析】分析:若存在三个互不相等的实数,使得成立,等价为方程存在三个不相等的实根,由于当时,,只有一个根,则当时,方程存在两个不相等的实根,构造函数,求函数的导数,研究函数的最值,即可得到结论.详解:若存在三个互不相等的实数,使得成立,等价为方程存在三个不相等的实根,当时,,,解得,当时,,只有一个根.当时,方程存在两个不相等的实根,即.设,,令,解得,当,解得,在上单调递增;当,解得,在上单调递减;又,,存在两个不相等的实根,.故答案为.点睛:本题考查导数的综合应用,根据条件转化为方程存在三个不相等的实根,构造函数,利用导数研究函数的极值是解决本题的关键,综合性较强,难度较大.16、2【解题分析】
根据方差的性质运算即可.【题目详解】由题意知:本题正确结果:【题目点拨】本题考查方差的运算性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)甲大棚万元,乙大棚万元时,总收益最大,且最大收益为万元.【解题分析】试题分析:(1)当甲大棚投入万元,则乙大棚投入万元,此时直接计算即可;(2)列出总收益的函数式得,令,换元将函数转换为关于的二次函数,由二次函数知识可求其最大值及相应的值.试题解析:(1)∵甲大棚投入50万元,则乙大棚投入150万元,∴(2),依题得,即,故.令,则,当时,即时,,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.考点:1.函数建模;2.二次函数.18、(1)(2)【解题分析】
(1)设直线的方程为,联立抛物线方程,运用韦达定理和中点坐标公式,以及弦长公式,计算可得所求值;(2)设线段的中点为,,运用中点坐标公式和直线的斜率公式,以及直线方程,可得的坐标,设出直线的方程代入抛物线方程,运用韦达定理,以及弦长公式和点到直线的距离公式,化简整理,结合基本不等式可得所求最大值.【题目详解】解:(1)当垂直于轴或斜率为零时,显然不符合题意,所以可设直线的方程为,代入方程,得故,结合解得.因此,.(2)设线段的中点为,,则,,.线段的垂直平分线的方程是,①由题意知,是①的一个解,所以线段的垂直平分线与轴的交点为定点,且点坐标为.直线的方程为,即,②②代入得,即,③依题意,,是方程③的两个实根,且,所以△,即.,,,点到线段的距离,.当且仅当,即时,上式取得等号.所以面积的最大值为.【题目点拨】本题考查直线的垂直平分线经过定点的证明,考查三角形面积的表达式的求法,考查三角形面积的最大值的求法,解题时要认真审题,注意均值定理的合理运用,属于中档题.19、(1)证明见解析.(2).【解题分析】
分析:(1)只要求得在时的最小值即可证;(2)在上有两个不等实根,可转化为在上有两个不等实根,这样只要研究函数的单调性与极值,由直线与的图象有两个交点可得的范围.详解:(1)证明:当时,函数.则,令,则,令,得.当时,,当时,在单调递增,(2)解:在有两个零点方程在有两个根,在有两个根,即函数与的图像在有两个交点.,当时,,在递增当时,,在递增所以最小值为,当时,,当时,,在有两个零点时,的取值范围是.点睛:本题考查用导数证明不等式,考查函数零点问题.用导数证明不等式可转化这求函数的最值问题,函数零点问题可转化为直线与函数图象交点问题,这可用分离参数法变形,然后再研究函数的单调性与极值,从而得图象的大致趋势.20、(1)(2)【解题分析】
(1)因为,所以为的中点,因为,所以,所以点在的垂直平分线上,所以,因为,所以点在以为焦点的椭圆上,因为,所以,所以点的轨迹方程为.(2)由得,,因为直线与椭圆相切于点,所以,即,解得,即点的坐标为,因为点在第二象限,所以,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,,当且仅当,即时,有最大值,所以,即面积的取值范围为.点睛:圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商店长期租赁合同协议
- 2025兰州市合同范本 兰州市合同书版本
- 2025餐厅装修承包合同
- 楼盘物业入驻合同协议
- 2025年监理工程师建设工程合同管理选择题
- 商店打工合同协议
- 员工租聘合同协议
- 2025年商业店面租赁合同模板
- 2025版临时工劳动合同模板
- 2025超市货物供应合同范本
- 组织供应,运输,售后服务方案
- (完整版)各档口单品菜品毛利率核算表
- 信息隐藏技术全套教学课件
- 2023年云南省昆明市中考作文真题解析及欣赏:坚持的力量
- SMC电磁阀的选型手册
- 2023年江苏泰州市第四人民医院招考聘用高层次人才11人模拟备考试卷(共1000题含答案解析)
- 工会换届选举请示样式
- 七年级音乐上册 《青少年管弦乐队指南》教学课件
- 新中国史智慧树知到答案章节测试2023年
- 员工面试登记表通用模板
- 部编版2022-2023学年六年级下册期末语文升学分班常考易错题模拟试卷(二)含解析
评论
0/150
提交评论