




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省孝感中学高二数学第二学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,,且,若实数满足不等式,则实数的取值范围为()A. B. C. D.2.若集合,,则()A. B.C. D.3.设i是虚数单位,复数a+i1+i为纯虚数,则实数a的值为A.-1B.1C.-2D.24.如图,直线:与双曲线:的右支交于,两点,点是线段的中点,为坐标原点,直线交双曲线于,两点,其中点,,在双曲线的同一支上,若双曲线的实轴长为4,,则双曲线的离心率为()A. B. C. D.5.函数的图象大致是()A. B.C. D.6.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A.6 B.4 C.2 D.07.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球 B.三棱锥 C.正方体 D.圆柱8.下面几种推理过程是演绎推理的是()A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人B.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°C.由平面三角形的性质,推测空间四边形的性质D.在数列{an}中,a1=1,an=12(an-1+1an-1)(n≥2),由此归纳出{a9.设不等式组所表示的平面区域为,若直线的图象经过区域,则实数的取值范围是()A. B. C. D.10.函数fx=aexx,x∈1,2,且∀x1A.-∞,4e2 B.4e11.条件,条件,若是的必要不充分条件,则的取值范围是()A. B. C. D.12.在三棱锥中,,二面角的大小为,则三棱锥外接球的表面积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中的系数为,则________.14.根据如图所示的伪代码,可知输出的结果S为________.15.引入随机变量后,下列说法正确的有:__________(填写出所有正确的序号).①随机事件个数与随机变量一一对应;②随机变量与自然数一一对应;③随机变量的取值是实数.16.在平行六面体(即六个面都是平行四边形的四棱柱)中,,,,又,则的余弦值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线l的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点P是曲线上的动点,点Q在OP的延长线上,且,点Q的轨迹为.(1)求直线l及曲线的极坐标方程;(2)若射线与直线l交于点M,与曲线交于点(与原点不重合),求的最大值.18.(12分)已知函数.(1)解不等式;(2)若的最小值为,正实数,满足,求的最小值.19.(12分)已知命题:函数在上单调递增;命题:关于的方程有解.若为真命题,为假命题,求实数的取值范围.20.(12分)已知函数,.(1)若在处的切线与在处的切线平行,求实数的值;(2)若,讨论的单调性;(3)在(2)的条件下,若,求证:函数只有一个零点,且.21.(12分)已知二次函数的图象过原点,满足,其导函数的图象经过点.求函数的解析式;设函数,若存在,使得对任意,都有,求实数的取值范围.22.(10分)如图所示,在边长为的正三角形中,、依次是、的中点,,,,、、为垂足,若将绕旋转,求阴影部分形成的几何体的表面积与体积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:根据,得到,直线的截距为,作出不等式表示的平面区域,通过平推法确定的取值范围.详解:向量,,且,,整理得,转换为直线满足不等式的平面区域如图所示.画直线,平推直线,确定点A、B分别取得截距的最小值和最大值.易得,分别将点A、B坐标代入,得,故选A.点睛:本题主要考查两向量垂直关系的应用,以及简单的线性规划问题,着重考查了分析问题和解答问题的能力和数形结合思想的应用.目标函数型线性规划问题解题步骤:(1)确定可行区域(2)将转化为,求z的值,可看做求直线,在y轴上截距的最值.(3)将平移,观察截距最大(小)值对应的位置,联立方程组求点坐标.(4)将该点坐标代入目标函数,计算Z.2、A【解题分析】分析:求出及,即可得到.详解:则.故选C.点睛:本题考查集合的综合运算,属基础题.3、A【解题分析】a+i1+i=(a+i)(1-i)4、A【解题分析】
根据点是线段的中点,利用点差法求得直线的斜率及其方程;联立直线与双曲线得到点横坐标,联立直线与直线,得到点横坐标。由于,根据相似可得,又因为双曲线的对称性,,故,则,整理得到,进一步求得离心率。【题目详解】设点为,点为,中点为,则,根据点差法可得,即,双曲线的实轴长为4,直线为,,直线为.联立,得;联立,得又,根据相似可得双曲线的对称性,,,,,故选A【题目点拨】本题考察双曲线离心率问题,出现弦中点考虑点差法,面积比值可以利用相似转化为边的比值,以此简化计算5、D【解题分析】
先分析函数奇偶性,再分析函数是否有零点即可.【题目详解】因为,故为奇函数,排除A,B.又当时,故有零点,排除C.故选D【题目点拨】本题主要考查函数图像的判定方法,一般考虑奇偶性与函数的零点或者函数的正负等,属于基础题型.6、C【解题分析】
由程序框图,先判断,后执行,直到求出符合题意的.【题目详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【题目点拨】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.7、D【解题分析】
试题分析:球的三视图都是圆,如果是同一点出发的三条侧棱两两垂直,并且长度相等的三棱锥(一条侧棱与底面垂直时)的三视图是全等的等腰直角三角形,正方体的三视图可以都是正方形,但圆柱的三视图中有两个视图是矩形,有一个是圆,所以圆柱不满足条件,故选D.考点:三视图8、B【解题分析】演绎推理是由普通性的前提推出特殊性结论的推理.其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项.
A选项“高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人”是归纳推理;故错;
B选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“∠A与∠B是两条平行直线的同旁内角”,结论是“∠A+∠B=180°”,故正确;
C选项“由平面三角形的性质,推出空间四边形的性质”是类比推理;故错;
D选项“在数列an中,a1=1,an=12(an-1+1an-19、C【解题分析】
由约束条件作出可行域,由直线过定点,数形结合求得定点与可行域内动点连线的斜率的范围,则答案可求.【题目详解】由不等式组作出可行域,如图.直线表示过点斜率为的直线.直线的图象经过区域即将轴绕点沿逆时针旋转到点的位置..所以直线的图象经过区域,其斜率.故选:C【题目点拨】本题考查了直线系方程,考查了直线的斜率,体现了数形结合的解题思想方法,是中档题.10、A【解题分析】
构造函数Fx=fx-x,根据函数的单调性得到F'x≤0在1,2【题目详解】不妨设x1<x2,令Fx=fx-x,则Fx在1,2F'x当x=1时,a∈R,当x∈1,2时,a≤x2所以gx在1,2单调递减,是gxmin【题目点拨】本题考查了函数的单调性,恒成立问题,构造函数Fx=f11、B【解题分析】因为是的必要不充分条件,所以是的必要不充分条件,可以推导出,但是不能推导出,若,则等价于无法推导出;若,则等价于满足条件的为空集,无法推导出;若,则等价于,由题意可知,,,,的取值范围是,故选B.12、D【解题分析】
取的中点为,由二面角平面角的定义可知;根据球的性质可知若和中心分别为,则平面,平面,根据已知的长度关系可求得,在直角三角形中利用勾股定理可求得球的半径,代入球的表面积公式可得结果.【题目详解】取的中点为由和都是正三角形,得,则是二面角的平面角,即设球心为,和中心分别为由球的性质可知:平面,平面又,,外接球半径:外接球的表面积为:本题正确选项:【题目点拨】本题考查三棱锥外接球的表面积的求解问题,关键是能够利用球的性质确定球心的大致位置,从而可利用勾股定理求解出球的半径.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先根据二项展开式的通项求得的系数,进而得到的值,然后再根据微积分基本定理求解即可.详解:二项式的展开式的通项为,令,可得的系数为,由题意得,解得.∴.点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.14、7【解题分析】第一次循环:;第二次循环:;第三次循环:;结束循环,输出考点:循环结构流程图15、③【解题分析】
要判断各项中对随机变量描述的正误,需要牢记随机变量的定义.【题目详解】引入随机变量,使我们可以研究一个随机实验中的所有可能结果,所以随机变量的取值是实数,故③正确.【题目点拨】本题主要考查随机变量的相关定义,难度不大.16、【解题分析】
先由题意,画出平行六面体,连接,,用向量的方法,根据题中数据,求出,,再根据余弦定理,即可求出结果.【题目详解】由题意,画出平行六面体,连接,,则,因为,,,,所以,又,所以.故答案为:.【题目点拨】本题主要考查空间向量的方法求夹角问题,熟记空间向量的运算法则,以及余弦定理即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线l的极坐标方程为.的极坐标方程为(2)【解题分析】
(1)消参可得直线的普通方程,再利用公式把极坐标方程与直角坐标方程进行转化,从而得到直线的极坐标方程;利用相关点法求得曲线的极坐标方程;(2)利用极坐标中极径的意义求得长度,再把所求变形成正弦型函数,进一步求出结果.【题目详解】(1)消去直线l参数方程中的t,得,由,得直线l的极坐标方程为,故.由点Q在OP的延长线上,且,得,设,则,由点P是曲线上的动点,可得,即,所以的极坐标方程为.(2)因为直线l及曲线的极坐标方程分别为,,所以,,所以,所以当时,取得最大值,为.【题目点拨】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,考查了点的轨迹方程的求法,涉及三角函数关系式的恒等变换,正弦型函数的性质的应用,属于中档题.18、(1);(2)9【解题分析】
(1)可采用零点讨论法先求出零点,,再将x分为三段,,,分别进行讨论求解(2)采用绝对值不等连式特点求出最小值,再采用均值不等式进行求解即可【题目详解】解:(1)①当时,,解得;②当时,,恒成立;③当时,,解得;综上所述,该不等式的解集为.(2)根据不等连式,所以,,,当且仅当时取等号.故最小值为9.【题目点拨】绝对值不等式的解法常采用零点讨论法,分区间讨论时,一定要注意零点处取不取得到的问题,如本题中将x分为三段,,;绝对值不等连式为:,应熟悉均值不等式常见的基本形式,知道基本形式都源于19、.【解题分析】试题分析:命题p:函数在上单调递增,利用一次函数的单调性可得或;命题q:关于x的方程有实根,可得,解得;若“p或q”为真,“p且q”为假,可得p与q必然一真一假.分类讨论解出即可.试题解析:由已知得,在上单调递增.若为真命题,则,,或;若为真命题,,,.为真命题,为假命题,、一真一假,当真假时,或,即;当假真时,,即.故.点睛:本题考查了一次函数的单调性、一元二次方程由实数根与判别式的关系、复合命题的判定方法,考查了推理能力,属于基础题.20、(1)(2)见解析(3)见解析【解题分析】分析:(1)先求一阶导函数,,用点斜式写出切线方程(2)先求一阶导函数的根,求解或的解集,判断单调性。(3)根据(2)的结论,求出极值画出函数的示意图,分析函数只有一个零点的等价条件是极小值大于零,函数在是减函数,故必然有一个零点。详解:(1)因为,所以;又。由题意得,解得(2),其定义域为,又,令或。①当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增,在和单调递减②当即时,,所以,函数在上单调递减③当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增在和上单调递减(3)证明:当时,由①知,的极小值为,极大值为.因为且又由函数在是减函数,可得至多有一个零点又因为,所以函数只有一个零点,且.点睛:利用导数求在某点切线方程利用,即可,方程的根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国益生元纤维行业产业运行态势及投资规划深度研究报告
- 2025至2030中国白酒原料行业产业运行态势及投资规划深度研究报告
- 2025至2030中国电子书阅读器行业深度研究及发展前景投资评估分析
- 2025至2030中国特殊标志信标浮标行业市场占有率及投资前景评估规划报告
- 支付宝的交易流程
- 施工管理培训计划
- 医疗领域中心理干预对患者康复的影响
- 教育行业大数据未来的增长机会与挑战
- 教育信息化进程中的智能教学平台探讨
- 教育技术领域的新成果探讨
- 检验科标本采集手册检验科标本采集手册参考
- 2024-2030年中国靶机行业市场发展趋势与前景展望战略分析报告
- 2024过敏性休克抢救指南(2024)课件干货分享
- JG∕T 197-2018 预应力混凝土空心方桩
- 三相异步电动机检修课件
- 化学-山西省运城市2023-2024学年高二第二学期期末调研测试试题和答案
- 2024智能网联汽车自动驾驶功能仿真试验方法及要求
- HYT 023-2018 中国海洋站代码(正式版)
- 人教版数学六年级下册数第四单元《比例》集体备课教案
- 山东省济南市2022-2023学年六年级下学期语文期末考试试卷(含答案)
- 材料、构配件进场检验记录表C4-44
评论
0/150
提交评论