福建省泉州市南安市第一中学2024届数学高二下期末监测试题含解析_第1页
福建省泉州市南安市第一中学2024届数学高二下期末监测试题含解析_第2页
福建省泉州市南安市第一中学2024届数学高二下期末监测试题含解析_第3页
福建省泉州市南安市第一中学2024届数学高二下期末监测试题含解析_第4页
福建省泉州市南安市第一中学2024届数学高二下期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市南安市第一中学2024届数学高二下期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,若,则A. B. C. D.2.已知点,则点轨迹方程是()A. B.C. D.3.若方程在区间(-1,1)和区间(1,2)上各有一根,则实数的取值范围是()A. B. C. D.或4.学生会为了调查学生对年俄罗斯世界杯的关注是否与性别有关,抽样调查人,得到如下数据:不关注关注总计男生301545女生451055总计7525100根据表中数据,通过计算统计量,并参考以下临界数据:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.845.0246.6357.87910.828若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过()A. B. C. D.5.球的体积是,则此球的表面积是()A. B. C. D.6.已知随机变量X服从正态分布且P(X4)=0.88,则P(0X4)=()A.0.88 B.0.76 C.0.24 D.0.127.设函数在上可导,其导函数为,且函数在处取得极大值,则函数的图象可能是A. B.C. D.8.已知复数,则()A.1 B. C. D.59.在中,,则的形状为()A.正三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形10.已知随机变量服从二项分布,且,则()A. B. C. D.11.某校学生一次考试成绩X(单位:分)服从正态分布N(110,102),从中抽取一个同学的成绩ξ,记“该同学的成绩满足90<ξ≤110”为事件A,记“该同学的成绩满足80<ξ≤100”为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)=()附:X满足P(μ﹣σ<X≤μ+σ)=0.68,P(μ﹣2σ<X≤μ+2σ)=0.95,P(μ﹣3σ<ξ≤μ+3σ)=0.1.A. B. C. D.12.若二项展开式中的系数只有第6项最小,则展开式的常数项的值为()A.-252 B.-210 C.210 D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的导函数为,若,则的值为___.14.甲、乙、丙、丁名同学被随机地分到三个社区参加社会实践,要求每个社区至少有一名同学,则甲、乙两人被分在同一个社区的概率是______________.15.球的表面积是其大圆面积的________倍.16.设满足约束条件,则的最大值为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)命题方程表示双曲线;命题不等式的解集是.为假,为真,求的取值范围.18.(12分)为了了解青少年的肥胖是否与常喝碳酸饮料有关,现对30名青少年进行调查,得到如下列联表:常

喝不常喝总

计肥

胖2不肥胖18总

计30已知从这30名青少年中随机抽取1名,抽到肥胖青少年的概率为.(1)请将列联表补充完整;(2)是否有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关?独立性检验临界值表:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参考公式:,其中n=a+b+c+d.19.(12分)已知集合,集合是集合S的一个含有8个元素的子集.(1)当时,设,①写出方程的解();②若方程至少有三组不同的解,写出k的所有可能取值;(2)证明:对任意一个X,存在正整数k,使得方程至少有三组不同的解.20.(12分)如图,平面,,,,,是的中点.(1)求证:平面;(2)求二面角的余弦值.21.(12分)已知函数的最小正周期为.(1)当时,求函数的值域;(2)已知的内角,,对应的边分别为,,,若,且,,求的面积.22.(10分)如图,有一块半椭圆形钢板,其长半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,梯形面积为.(1)当,时,求梯形的周长(精确到);(2)记,求面积以为自变量的函数解析式,并写出其定义域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据平面向量的线性运算法则,用、表示出即可.【题目详解】即:本题正确选项:【题目点拨】本题考查平面向量的加法、减法和数乘运算,属于基础题.2、A【解题分析】由双曲线的定义可知:点位于以为焦点的双曲线的左支上,且,故其轨迹方程为,应选答案A。3、B【解题分析】

函数f(x)=在区间(﹣1,1)和区间(1,2)上分别存在一个零点,则,解得即可.【题目详解】∵函数f(x)=ax2﹣2x+1在区间(﹣1,1)和区间(1,2)上分别存在一个零点,∴,即,解得a<1,故选B.【题目点拨】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.4、A【解题分析】因为,所以若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)5、B【解题分析】

先计算出球的半径,再计算表面积得到答案.【题目详解】设球的半径为R,则由已知得,解得,故球的表面积.故选:【题目点拨】本题考查了圆的体积和表面积的计算,意在考查学生的计算能力.6、B【解题分析】

正态曲线关于对称,利用已知条件转化求解概率即可.【题目详解】因为随机变量服从正态分布,,得对称轴是,,,,故选B.【题目点拨】本题在充分理解正态分布的基础上,充分利用正态分布的对称性解题,是一道基础题.7、D【解题分析】

因为-2为极值点且为极大值点,故在-2的左侧附近>0,-2的右侧<0,所以当x>-2且在-2的右侧附近时,排除BC,当x<-2且在-2的左侧附近时,,排除AC,故选D8、C【解题分析】.故选9、B【解题分析】

利用二倍角公式代入cos2=求得cosB=,进而利用余弦定理化简整理求得a2+b2=c2,根据勾股定理判断出三角形为直角三角形.【题目详解】因为,,所以,有.整理得,故,的形状为直角三角形.故选:B.【题目点拨】余弦的二倍角公式有三个,要根据不同的化简需要进行选取..在判断三角形形状的方法中,一般有,利用正余弦定理边化角,角化边,寻找关系即可10、A【解题分析】

由二项分布与次独立重复实验的模型得:,,则,得解.【题目详解】因为服从二项分布,,,所以,,即,,则,故选:A.【题目点拨】本题考查二项分布与次独立重复实验的模型,属于基础题.11、A【解题分析】

利用条件概率公式,即可得出结论.【题目详解】由题意,,,所以,故选A项.【题目点拨】本题考查条件概率的计算,正态分布的简单应用,属于简单题.12、C【解题分析】,,令,所以常数项为,故选C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

求函数的导函数,令即可求出的值.【题目详解】因为令则所以【题目点拨】本题主要考查了函数的导数,及导函数求值,属于中档题.14、【解题分析】

可把甲乙看成一个整体,再分到三个社区,算出对应的方法种数,再由题意算出所有的分配种数,结合古典概型公式求解即可【题目详解】把甲乙看作一个整体,再与其他两人分到三个社区共有种方法,而所有的分配方法有种,则甲、乙两人被分在同一个社区的概率是故答案为:【题目点拨】本题考查排列组合公式的应用,古典概型的求法,属于基础题15、【解题分析】

设球的半径为,可得出球的表面积和球的大圆面积,从而可得出结果.【题目详解】设球的半径为,则球的表面积为,球的大圆面积为,因此,球的表面积是其大圆面积的倍,故答案为:.【题目点拨】本题考查球的表面积公式的应用,考查计算能力,属于基础题.16、5.【解题分析】.试题分析:约束条件的可行域如图△ABC所示.当目标函数过点A(1,1)时,z取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】分析:先化简命题p和q,再根据为假,为真得到真假或假真,最后得到m的不等式组,解不等式组即得m的取值范围.详解:真:,真:或∴因为为假,为真所以真假或假真,真假得假真得∴范围为.点睛:(1)本题主要考查命题的化简和复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18、(1)见解析(2)有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关【解题分析】试题分析:(1)设常喝碳酸饮料肥胖的学生有x人,求出x的值,填表即可;(2)计算观测值K2,对照数表得出结论;试题解析:解:(1)设常喝碳酸饮料且肥胖的青少年人数为x,则=

解得x=6列联表如下:常

喝不常喝总

计肥

胖628不肥胖41822总

计102030(2)由(1)中列联表中的数据可求得随机变量k2的观测值:k=≈8.523>7.789因此有99.5%的把握认为青少年的肥胖与常喝碳酸饮料有关.19、(1)①②4,6.(2)证明见详解.【解题分析】

(1)①根据两个元素之差为3,结合集合的元素,即可求得;②根据题意要求,写出集合X中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得;(2)采用反证法,假设不存在满足条件的k,根据差数的范围推出矛盾即可.【题目详解】(1)①方程的解有:.②以下规定两数的差均为正,则:列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k的可能取值有4,6.(2)证明:不妨设,记,,共13个差数.假设不存在满足条件的k,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而①又,这与①矛盾.故假设不成立,结论成立.即对任意一个X,存在正整数k,使得方程至少有三组不同的解.【题目点拨】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.20、(1)证明见解析;(2).【解题分析】

可以以为轴、为轴、为轴构建空间直角坐标系,写出的空间坐标,通过证明得证平面通过求平面和平面的法向量得证二面角的余弦值.【题目详解】(1)根据题意,建立以为轴、为轴、为轴的空间直角坐标系,则,,,因为,所以.因为平面,且,所以平面.(2)设平面的法向量为,则因为,所以.令,则.所以是平面的一个法向量.因为平面,所以是平面的法向量.所以由此可知,与的夹角的余弦值为.根据图形可知,二面角的余弦值为.【题目点拨】在计算空间几何以及二面角的时候,可以借助空间直角坐标系.21、(Ⅰ)(Ⅱ)【解题分析】

(1)利用周期公式求出ω,求出相位的范围,利用正弦函数的值域求解函数f(x)的值域;(2)求出A,利用余弦定理求出bc,然后求解三角形的面积.【题目详解】解:(1)的最小正周期是,得,当时,所以,此时的值域为(2)因为,所以,∴,的面积【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论