




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省茂名地区2024届数学高二下期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(为虚数单位)的共轭复数是()A. B. C. D.2.在复数列中,,,设在复平面上对应的点为,则()A.存在点,对任意的正整数,都满足B.不存在点,对任意的正整数,都满足C.存在无数个点,对任意的正整数,都满足D.存在唯一的点,对任意的正整数,都满足3.已知随机变量的概率分布如下表,则()A. B. C. D.4.若函数fx=3sinπ-ωx+sin5π2+ωx,且fA.2kπ-2π3C.kπ-5π125.命题“任意”为真命题的一个充分不必要条件是()A. B. C. D.6.设全集,集合,,则()A. B. C. D.7.以下几个命题中:①线性回归直线方程恒过样本中心;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.其中真命题的个数为()A.1个 B.2个 C.3个 D.4个8.已知椭圆与双曲线有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为()A. B.4 C. D.99.在(x-)10的展开式中,的系数是()A.-27 B.27 C.-9 D.910.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为()A.6 B.7 C.8 D.911..设(x1,y1),(x2,y2A.x和y的相关系数为直线l的斜率B.x和y的相关系数在0到1之间C.当n为偶数时,分布在l两侧的样本点的个数一定相同D.直线l过点(12.执行如图所示的程序框图,若输入的值为,则输出的的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若曲线在矩阵对应的变换下变为一个椭圆,则椭圆的离心率为____.14.函数与函数在第一象限的图象所围成封闭图形的面积是_____.15.某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502)16.将一颗均匀的骰子连续抛掷2次,向上的点数依次记为,则“”的概率是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为.(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小.18.(12分)设.(1)解不等式;(2)若不等式在上恒成立,求实数的取值范围.19.(12分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过点的直线的参数方程为(t为参数),直线与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;(Ⅱ)若,求的值.20.(12分)已知函数f(x)=x+,且此函数的图象过点(1,5).(1)求实数m的值并判断f(x)的奇偶性;(2)判断函数f(x)在[2,+∞)上的单调性,证明你的结论.21.(12分)已知函数.(1)若关于的不等式的解集不是空集,求的取值范围;(2)设的最小值为,若正实数,,满足.证明:.22.(10分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB,D,E分别是AB,BB1的中点,且AC=BC=AA1=1.(1)求直线BC1与A1D所成角的大小;(1)求直线A1E与平面A1CD所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
化简,由共轭复数的定义即可得到答案。【题目详解】由于,所以的共轭复数是,故答案选D.【题目点拨】本题考查复数乘除法公式以及共轭复数的定义。2、D【解题分析】
由,由复数模的性质可得出,可得出数列是等比数列,且得出,再由,结合向量的三角不等式可得出正确选项.【题目详解】,,,,所以数列是以为首项,以为公比的等比数列,且(为坐标原点),由向量模的三角不等式可得,当点与坐标原点重合时,,因此,存在唯一的点,对任意的正整数,都满足,故选:D.【题目点拨】本题考查复数的几何意义,同时也考查了复数模的性质和等比数列的综合应用,解题的关键就是利用向量模的三角不等式构建不等关系进行验证,考查推理能力,属于难题.3、C【解题分析】由分布列的性质可得:,故选C.4、A【解题分析】
本题首先要对三角函数进行化简,再通过α-β的最小值是π2推出函数的最小正周期,然后得出ω【题目详解】fx==3sin=2sin再由fα=2,fβ=0,α-β的最小值是fx=2sinx+x∈2kπ-2π3【题目点拨】本题需要对三角函数公式的运用十分熟练并且能够通过函数图像的特征来求出周期以及增区间.5、C【解题分析】试题分析:对此任意性问题转化为恒成立,当,即,,若是原命题为真命题的一个充分不必要条件,那应是的真子集,故选C.考点:1.集合;2.充分必要条件.6、B【解题分析】
求得,即可求得,再求得,利用交集运算得解.【题目详解】由得:或,所以,所以由可得:或所以所以故选:B【题目点拨】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.7、C【解题分析】
由线性回归直线恒过样本中心可判断①,由相关指数的值的大小与拟合效果的关系可判断②,由随机误差和方差的关系可判断③,由相关指数和相关系数的关系可判断④.【题目详解】①线性回归直线方程恒过样本中心,所以正确.②用相关指数可以刻画回归的效果,值越大说明模型的拟合效果越好,所以错误.③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;所以正确.④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方,所以正确.所以①③④正确.故选:C【题目点拨】本题考查线性回归直线方程和相关指数刻画回归效果、以及与相关系数的变形,属于基础题.8、A【解题分析】
题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出4e12+e22的最小值.【题目详解】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2a2,①由椭圆定义|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=4a12+4a22,④将④代入③,得a12+a22=2c2,∴4e12+e22==++≥+2=.故选A.【题目点拨】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9、D【解题分析】试题分析:通项Tr+1=x10-r(-)r=(-)rx10-r.令10-r=6,得r=4.∴x6的系数为9考点:二项式定理10、C【解题分析】
根据古典概型概率计算公式列出不等式,利用组合数公式进行计算,由此求得至少抽取的产品件数.【题目详解】设抽取件,次品全部检出的概率为,化简得,代入选项验证可知,当时,符合题意,故选C.【题目点拨】本小题主要考查古典概型概率计算,考查组合数的计算,属于基础题.11、D【解题分析】因回归直线一定过这组数据的样本中心点(x点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求a,b,写出回归方程,回归直线方程恒过点12、B【解题分析】开始运行,,满足条件,,;第二次运行,,满足条件,s=1+1=1.i=3;第三次运行,,满足条件,,;第四次运行,,满足条件,,;第五次运行,,满足条件,,;第六次运行,,满足条件,,,不满足条件,程序终止,输出,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】
在曲线上任取一点,得出,由变换得出,代入方程可得出椭圆方程,由此可计算出椭圆的离心率.【题目详解】在曲线上任取一点,得出,①设点经过变换后对应的点的坐标为,由题意可得,则有,即,代入②式得,则,,,因此,椭圆的离心率为,故答案为.【题目点拨】本题考查坐标变换,考查相关点法求轨迹方程,同时也考查了椭圆离心率的求解,解题的关键就是利用相关点法求出轨迹方程,考查运算求解能力,属于中等题.14、【解题分析】
先求出直线与曲线的交点坐标,封闭图形的面积是函数y=x与y=在x∈[0,1]上的积分.【题目详解】解:联立方程组可知,直线y=x与曲线y=的交点为(0,0)(1,1);∴所围成的面积为S=.故答案为.【题目点拨】本题考查了定积分,找到积分区间和被积函数是解题关键,属于基础题.15、【解题分析】设元件1,2,3的使用寿命超过1000小时的事件分别记为A,B,C,显然P(A)=P(B)=P(C)=12∴该部件的使用寿命超过1000的事件为(AB+AB+AB)C.∴该部件的使用寿命超过1000小时的概率为P=(12×1216、【解题分析】分析:骰子连续抛掷2次共有36种结果,满足的有6种详解:一颗均匀的骰子连续抛掷2次,向上的点数依次记为,则共有种结果,满足共有:(3,1),(4,1),(5,1),(6,1),(5,2),(6,2)6种则”的概率是点睛:古典概型概率要准确求出总的事件个数和基本事件个数,然后根据概率公式求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】
(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作交圆锥底面圆于点,则即为异面直线与所成角,在中,求解出三边长,利用余弦定理可求得,从而得到结果;(3)根据截面面积之比可得底面积之比,求得,进而求得等边三角形的边长,利用正棱锥的特点可知若为的中心,则即为侧棱与底面所成角,在中利用正切值求得结果.【题目详解】(1)设圆锥高为,母线长为由圆锥体积得:圆锥的侧面积:(2)作交圆锥底面圆于点,连接,则即为异面直线与所成角由题意知:,,又即异面直线与所成角为:(3)平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为又,即为边长为的等边三角形设为的中心,连接,则三棱锥为正三棱锥平面即为侧棱与底面所成角即侧棱与底面所成角为:【题目点拨】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.18、(1)(2)【解题分析】试题分析:(1)利用零点分段法将去绝对值,分成三段,令每一段大于,求解后取并集;(2)由(1)时,,分离常数得,右边函数为增函数,所以,解得.试题解析:(1),所以当时,,满足原不等式;当时,,原不等式即为,解得满足原不等式;当时,不满足原不等式;综上原不等式的解集为.(2)当时,,由于原不等式在上恒成立,,在上恒成立,,设,易知在上为增函数,.考点:不等式选讲.19、(Ⅰ),(Ⅱ).【解题分析】试题分析:(Ⅰ)根据可将曲线C的极坐标方程化为直角坐标,两式相减消去参数得直线的普通方程为.(Ⅱ)由直线参数方程几何意义有,因此将直线的参数方程代入曲线的直角坐标方程中,得,由韦达定理有.解之得:或(舍去)试题解析:(Ⅰ)由得,∴曲线的直角坐标方程为.直线的普通方程为.(Ⅱ)将直线的参数方程代入曲线的直角坐标方程中,得,设两点对应的参数分别为,则有.∵,∴,即.∴.解之得:或(舍去),∴的值为.考点:极坐标方程化为直角坐标,参数方程化普通方程,直线参数方程几何意义20、(1)m=1,奇函数;(2)f(x)在[2,+∞)上单调递增,证明见解析.【解题分析】
试题分析:(1)函数图象过点(1,5)将此点代入函数关系式求出m的值即可,因为函数定义域关于原点对称,需要判断函数是否满足关系式或者.满足前者为偶函数,满足后者为奇函数,否则不具有奇偶性.此题也可以将看做与两个函数的和,由的奇偶性判断出的奇偶性.(2)利用函数单调性的定义式:区间上的时,的正负来确定函数在区间上的单调性.试题解析:(1)(1)∵f(x)过点(1,5),∴1+m=5⇒m=1.对于f(x)=x+,∵x≠2,∴f(x)的定义域为(-∞,2)∪(2,+∞),关于原点对称.∴f(-x)=-x+=-f(x).∴f(x)为奇函数.另解:,,定义域均与定义域相同,因为为奇函数,因此可以得出也为奇函数.(2)证明:设x1,x2∈[2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西崇左市本年度(2025)小学一年级数学部编版质量测试(下学期)试卷及答案
- 2025-2030年中国救生用品市场竞争格局及发展评估研究报告
- 2025届辽宁省辽阳市高三适应性调研考试英语试题含答案
- 涂装后处理工中级考试题(附答案)
- 广西壮族自治区柳州市2024-2025学年高三下学期4月月考历史试题(原卷版+解析版)
- 租书服务的校园阅读周考核试卷
- 航空器维修质量管理与监督考核试卷
- 批发市场的客户体验优化考核试卷
- 石材加工企业质量管理与效率提升考核试卷
- 环境治理与社会责任考核试卷
- 2024年烟台海阳市卫生健康局所属事业单位招聘工作人员真题
- 延边大学教师岗位招聘考试真题2024
- 青马工程笔试试题及答案
- 豆粕交易合同协议
- 项目设计安全管理制度
- 电子化采购招投标平台系统建设项目解决方案
- 小学京剧知识
- (二模)咸阳市2025年高三高考模拟检测(二)物理试卷(含答案)
- (2025)汉字听写大会竞赛题库(含答案)
- 20类重点场所火灾防范指导手册
- 铁塔土建施工方案
评论
0/150
提交评论