2024届甘肃武威市凉州区数学高二下期末学业质量监测试题含解析_第1页
2024届甘肃武威市凉州区数学高二下期末学业质量监测试题含解析_第2页
2024届甘肃武威市凉州区数学高二下期末学业质量监测试题含解析_第3页
2024届甘肃武威市凉州区数学高二下期末学业质量监测试题含解析_第4页
2024届甘肃武威市凉州区数学高二下期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃武威市凉州区数学高二下期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,则“”是“”的()A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件2.已知向量,且,则等于()A.1 B.3 C.4 D.53.若函数对任意都有成立,则()A.B.C.D.与的大小不确定4.从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是()A. B. C. D.5.在等差数列{an}中,若S9=18,Sn=240,=30,则n的值为A.14 B.15 C.16 D.176.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.7.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.55278.存在实数,使成立的一个必要不充分条件是()A. B. C. D.9.已知命题,则命题的否定为()A. B.C. D.10.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件11.点的直角坐标为,则点的极坐标为()A.B.C.D.12.用数学归纳法证明不等式“(,)”的过程中,由推导时,不等式的左边增加的式子是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.现有颜色为红、黄、蓝的小球各三个,相同颜色的小球依次编号、、,从中任取个小球,颜色编号均不相同的情况有___________种.14.已知定义在R上的函数是奇函数且满足,则_________.15.抛物线的焦点为F,点是抛物线C上的一点满足,则抛物线C的方程为________.16.设椭圆的两个焦点分别为,点在椭圆上,且,,则该椭圆的离心率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知抛物线:过点(1)求抛物线的方程:(2)设为抛物线的焦点,直线:与抛物线交于,两点,求的面积.18.(12分)已知,,分别为内角,,的对边,.(1)求;(2)若,的面积为,求的周长.19.(12分)设函数.(Ⅰ)求不等式的解集;(Ⅱ)求证:,并求等号成立的条件.20.(12分)近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数.环保部门记录了某地区7天的空气质量指数,其中,有4天空气质量为优,有2天空气质量为良,有1天空气质量为轻度污染.现工作人员从这7天中随机抽取3天进行某项研究.(I)求抽取的3天中至少有一天空气质量为良的概率;(Ⅱ)用表示抽取的3天中空气质量为优的天数,求随机变量的分布列和数学期望.21.(12分)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率有帮助”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:60分及以下61~70分71~80分81~90分91~100分甲班(人数)3612159乙班(人数)4716126现规定平均成绩在80分以上(不含80分)的为优秀.(1)由以上统计数据填写列联表,并判断是否有的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助;(2)对甲乙两班60分及以下的同学进行定期辅导,一个月后从中抽取3人课堂检测,表示抽取到的甲班学生人数,求及至少抽到甲班1名同学的概率.22.(10分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为160人、120人、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人到前排就坐,其中高二代表队有6人.(1)求的值;(2)把到前排就坐的高二代表队6人分别记为,,,,,,现随机从中抽取2人上台抽奖.求或没有上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】不能推出,反过来,若则成立,故为必要不充分条件.2、D【解题分析】

先根据已知求出x,y的值,再求出的坐标和的值.【题目详解】由向量,且,则,解得,所以,所以,所以,故答案为D【题目点拨】本题主要考查向量的坐标运算和向量的模的计算,意在考查学生对这些知识的掌握水平和分析推理能力.3、A【解题分析】

构造函数,利用导数可判断g(x)的单调性,由单调性可得g(ln3)与g(ln5)的大小关系,整理即可得到答案.【题目详解】解:令,则,因为对任意都有,所以,即在R上单调递增,又,所以,即,即,故选:A.【题目点拨】本题考查导数的运算及利用导数研究函数的单调性,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性,属中档题.4、C【解题分析】分析:根据古典概型计算恰好是2个白球1个红球的概率.详解:由题得恰好是2个白球1个红球的概率为.故答案为:C.点睛:(1)本题主要考查古典概型,意在考查学生对这些知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.5、B【解题分析】试题分析:由等差数列的性质知;.考点:等差数列的性质、前项和公式、通项公式.6、C【解题分析】

由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【题目详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【题目点拨】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.7、D【解题分析】

先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【题目详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【题目点拨】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。8、D【解题分析】分析:先求成立充要条件,即的最小值,再根据条件之间包含关系确定选择.详解:因为存在实数,使成立,所以的最小值,因为,所以,因为,因此选D.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.9、A【解题分析】

根据全称命题的否定为特称命题,即可直接得出结果.【题目详解】因为命题,所以命题的否定为:故选A【题目点拨】本题主要考查含有一个量词的命题的否定,只需改写量词与结论即可,属于常考题型.10、A【解题分析】

“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【题目详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选A.【题目点拨】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.11、A【解题分析】试题分析:,,又点在第一象限,,点的极坐标为.故A正确.考点:1直角坐标与极坐标间的互化.【易错点睛】本题主要考查直角坐标与极坐标间的互化,属容易题.根据公式可将直角坐标与极坐标间互化,当根据求时一定要参考点所在象限,否则容易出现错误.12、D【解题分析】

把用替换后两者比较可知增加的式子.【题目详解】当时,左边,当时,左边,所以由推导时,不等式的左边增加的式子是,故选:D.【题目点拨】本题考查数学归纳法,掌握数学归纳法的概念是解题基础.从到时,式子的变化是数学归纳法的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,列出所有符合条件的选法组合,可得出结果.【题目详解】设红色的三个球分别为、、,黄色的三个球分别为、、,蓝色的三个球分别为、、,现从中任取个小球,颜色编号均不相同的情况有:、、、、、,因此,从中任取个小球,颜色编号均不相同的情况有种,故答案为.【题目点拨】本题考查分类计数原理的应用,在求解排列组合问题时,若符合条件的基本事件数较少时,可采用列举法求解,考查分类讨论数学思想,属于中等题.14、0【解题分析】

根据奇函数的性质可知,由可求得周期和,利用周期化简所求式子可求得结果.【题目详解】为定义在上的奇函数,.由得:,是周期为的周期函数,令得:..故答案为:.【题目点拨】本题考查利用函数的奇偶性和周期性求解函数值的问题,关键是能够根据抽象函数关系式推导得到函数的周期.15、【解题分析】

由在抛物线C上,结合抛物线的定义,即可求抛物线C的方程.【题目详解】当时,,解得,则抛物线C的方程为:;当时,,解得,则抛物线C的方程为:;故答案为:.【题目点拨】本题考查利用抛物线的定义求抛物线的标准方程,难度较易.16、【解题分析】试题分析:在中,,,设,则.考点:椭圆的定义.【易错点晴】本题的考点是椭圆定义的考查,即的等式关系和几何意义.由给定的条件可知三角形不仅是直角三角形,也可以得到其中一个锐角,由此可用来表示直角三角形的三个边,再根据椭圆的定义便可建立等式关系,求得椭圆的离心率.椭圆中研究的关系不仅选择填空会考有时解答题也会出,它是研究椭圆基础.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)12.【解题分析】

(1)将点的坐标代入抛物线方程中即可;(2)联立方程组先求出,点坐标,进而利用两点间距离公式求出,然后利用点到直线距离公式求出的高,最后代入三角形面积公式求解即可.【题目详解】(1)点在抛物线上,将代入方程中,有,解得,抛物线的方程为.(2)如图所示,由抛物线方程可知焦点,则点到直线的距离为,联立方程组,可解得,,所以,,所以,.【题目点拨】本题主要考查抛物线的标准方程、直线与抛物线的位置关系以及抛物线性质的应用,涉及到的知识点包括两点的之间的距离公式和点到直线的距离公式,意在考查学生对这些基础知识的掌握能力和分析推理能力,属于基础题.18、(1);(2).【解题分析】

(1)利用正弦定理把边转化为角,再由两角和的正弦可求出角;(2)利用三角形面积公式可得到,再由余弦定理可求出的周长;【题目详解】(1)由正弦定理知,∴,∴,.(或用余弦定理将换掉求解)(2)由(1)及已知可得,解得,由余弦定理知,∴,∴的周长为.【题目点拨】本题考查了正弦定理、余弦定理以及面积公式,考查了学生的计算能力,属于较易题.19、(Ⅰ)(Ⅱ)见证明【解题分析】

(Ⅰ)利用零点分类法,进行分类讨论,求出不等式的解集;(Ⅱ)法一:,当且仅当时取等号,再根据三角绝对值不等式,可以证明出,当且仅当时取等号,最后可以证明出,以及等号成立的条件;法二:利用零点法把函数解析式写成分段函数形式,求出函数的单调性,最后求出函数的最小值,以及此时的的值.【题目详解】解:(Ⅰ)当时,,解得当时,,解得当时,,无实数解原不等式的解集为(Ⅱ)证明:法一:,当且仅当时取等号又,当且仅当时取等号,等号成立的条件是法二:在上单调递减,在上单调递增,等号成立的条件是【题目点拨】本题考查了绝对值不等式的解法以及证明绝对值不等式,利用零点法,分类讨论是解题的关键.20、(I);(Ⅱ).【解题分析】

(Ⅰ)可先计算对立事件“抽取的3天空气质量都不为良”的概率,再利用相关公式即得答案;(Ⅱ)找出随机变量的所有可能取值,分别计算相关概率,从而列出分布列计算数学期望.【题目详解】(Ⅰ)解:设事件为“抽取的3天中至少有一天空气质量为良”,事件的对立事件为“抽取的3天空气质量都不为良”,从7天中随机抽取3天共有种不同的选法,抽取的3天空气质量都不为良共有种不同的选法,则,所以,事件发生的概率为.(Ⅱ)解:随机变量的所有可能取值为0,1,2,3.,所以,随机变量的分布列为0123随机变量的数学期望.【题目点拨】本题主要考查对立事件的相关概念与计算,超几何分布的分布列与数学期望,意在考查学生的分析能力,逻辑推理能力和计算能力.21、(1)见解析;(2).【解题分析】

(1)根据题意得到列联表,然后由列联表中的数据得到的值,再结合临界值表可得结论.(2)由题意得到随机变量的所有可能取值,并分别求出对应的概率,进而得到的分布列,于是可得所求.【题目详解】(1)由题意可得列联表如下:优秀人数非优秀人数总计甲班212445乙班271845合计484290由表中数据可得,所以没有95%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.(2)由题意得60分以下共有7人,其中甲班有3人,所以随机变量显然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论