山西省朔州市怀仁市重点中学2024届数学高二下期末考试模拟试题含解析_第1页
山西省朔州市怀仁市重点中学2024届数学高二下期末考试模拟试题含解析_第2页
山西省朔州市怀仁市重点中学2024届数学高二下期末考试模拟试题含解析_第3页
山西省朔州市怀仁市重点中学2024届数学高二下期末考试模拟试题含解析_第4页
山西省朔州市怀仁市重点中学2024届数学高二下期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省朔州市怀仁市重点中学2024届数学高二下期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A.288种 B.144种 C.720种 D.360种2.集合,,则=()A. B.C. D.3.已知直线(为参数)与曲线的相交弦中点坐标为,则等于()A. B. C. D.4.已知函数,则函数的定义域为()A. B. C. D.5.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有()A.80种 B.90种 C.120种 D.150种6.下列不等式成立的是()A. B. C. D.7.已知数列是等比数列,若则的值为()A.4 B.4或-4 C.2 D.2或-28.中国古代儒家提出的“六艺”指:礼、乐、射、御、书、数.某校国学社团预在周六开展“六艺”课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“乐”与“书”不能相邻,“射”和“御”要相邻,则针对“六艺”课程讲座活动的不同排课顺序共有()A.18种 B.36种 C.72种 D.144种9.下列选项错误的是()A.“”是“”的充分不必要条件.B.命题“若,则”的逆否命题是“若,则”C.若命题“”,则“”.D.若“”为真命题,则均为真命题.10.定义“规范01数列”如下:共有项,其中项为0,项为1,且对任意,,,…,中0的个数不少于1的个数.若,则不同的“规范01数列”共有()A.14个 B.13个 C.15个 D.12个11.在中,,则()A. B. C. D.12.在一组数据为,,…,(,不全相等)的散点图中,若这组样本数据的相关系数为,则所有的样本点满足的方程可以是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.观察下面几个算式:;;;1+2+3+4+5+4+3+2+1=25.利用上面算式的规律,计算______14.抛物线的准线方程为________.15.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________16.设函数,则使得成立的x的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)高二年级数学课外小组人:(1)从中选一名正组长和一名副组长,共有多少种不同的选法?(2)从中选名参加省数学竞赛,有多少种不同的选法?18.(12分)如图,在正半轴上的点有一只电子狗,点有一个机器人,它们运动的速度确定,且电子狗的速度是机器人速度的两倍,如果同时出发,机器人比电子狗早到达或同时到达某点,那么电子狗将被机器人捕获,电子狗失败,这一点叫失败点,若.(1)求失败点组成的区域;(2)电子狗选择正半轴上的某一点,若电子狗在线段上获胜,问点应在何处?19.(12分)已知函数().(Ⅰ)若在处的切线过点,求的值;(Ⅱ)若恰有两个极值点,().(ⅰ)求的取值范围;(ⅱ)求证:.20.(12分)已知函数(其中,为自然对数的底数).(Ⅰ)若函数无极值,求实数的取值范围;(Ⅱ)当时,证明:.21.(12分)某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分的分布列与数学期望.22.(10分)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX<300300≤X<700700≤X<900X≥900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:工期延误天数Y的均值与方差;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据题意分步进行分析:①用倍分法分析《将进酒》,《望岳》和另外两首诗词的排法数目;②用插空法分析《山居秋暝》与《送杜少府之任蜀州》的排法数目,由分步计数原理计算可得答案【题目详解】根据题意分步进行分析:①将《将进酒》,《望岳》和另外两首诗词的首诗词全排列,则有种顺序《将进酒》排在《望岳》的前面,这首诗词的排法有种②,这首诗词排好后,不含最后,有个空位,在个空位中任选个,安排《山居秋暝》与《送杜少府之任蜀州》,有种安排方法则后六场的排法有种故选【题目点拨】本题考查的是有关限制条件的排列数的问题,第一需要注意先把不相邻的元素找出来,将剩下的排好,这里需要注意定序问题除阶乘,第二需要将不相邻的两个元素进行插空,利用分步计数原理求得结果,注意特殊元素特殊对待。2、C【解题分析】

先化简集合A,B,结合并集计算方法,求解,即可.【题目详解】解得集合,所以,故选C.【题目点拨】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小.3、A【解题分析】

根据参数方程与普通方程的互化,得直线的普通方程为,由极坐标与直角坐标的互化,得曲线普通方程为,再利用“平方差”法,即可求解.【题目详解】由直线(为参数),可得直线的普通方程为,由曲线,可得曲线普通方程为,设直线与椭圆的交点为,,则,,两式相减,可得.所以,即直线的斜率为,所以,故选A.【题目点拨】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.4、B【解题分析】

根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【题目详解】因为函数,所以,所以,解得,所以的定义域为.故选:B【题目点拨】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.5、D【解题分析】

不同的分配方案有(C6、B【解题分析】

利用指数函数与对数函数的单调性,即可得到判定,得出答案.【题目详解】由题意,指数函数时,函数是增函数,所以不正确,是正确的,又由对数函数是增函数,所以不正确;对数函数是减函数,所以不正确,故选B.【题目点拨】本题主要考查了指数函数以及对数函数的单调性的应用,其中熟记指数函数与对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解题分析】

设数列{an}的公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【题目详解】因故选:A【题目点拨】本题考查等比数列的性质以及通项公式,属于简单题.8、D【解题分析】

由排列、组合及简单的计数问题得:由题意可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,再相乘得解.【题目详解】由题意“乐”与“书”不能相邻,“射”和“御”要相邻,可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,由于是分步进行,所以共有种,故选:D.【题目点拨】本题考查排列、组合及简单计数问题,根据问题选择合适的方法是关键,此类问题常见的方法有元素优先法、捆绑法、插空法等,本题属于中等题.9、D【解题分析】

根据充分条件和必要条件的定义,逆否命题的定义、含有量词的命题的否定以及复合命题的真假关系依次对选项进行判断即可得到答案。【题目详解】对于A,由可得或,即“”是“”的充分不必要条件,故A正确;对于B,根据逆否命题的定义可知命题“若,则”的逆否命题是“若,则”,故B正确;对于C,由全称命题的否定是存在命题,可知若命题“”,则“”,故C正确;对于D,根据复合命题的真值表可知若“”为真命题,则至少一个为真命题,故D错误。故答案选D【题目点拨】本题考查命题真假的判定,涉及到逆否命题的定义、充分条件与必要条件的判断、含有量词的命题的否定以及复合命题的真假关系,属于基础题。10、A【解题分析】分析:由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.详解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故答案为:A.点睛:本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏.11、D【解题分析】

利用余弦定理计算出的值,于此可得出的值.【题目详解】,,由余弦定理得,,因此,,故选D.【题目点拨】本题考查利用余弦定理求角,解题时应该根据式子的结构确定对象角,考查计算能力,属于基础题.12、A【解题分析】

根据相关系数的概念即可作出判断.【题目详解】∵这组样本数据的相关系数为,∴这一组数据,,…线性相关,且是负相关,∴可排除D,B,C,故选A【题目点拨】本题考查了相关系数,考查了正相关和负相关,考查了一组数据的完全相关性,是基础的概念题.二、填空题:本题共4小题,每小题5分,共20分。13、10000【解题分析】观察归纳中间数为2,结果为4=22;中间数为3,结果为9=32;中间数为4,结果为16=42;于是中间数为100,结果应为1002=10000.故答案为:10000点睛:这个题目考查的是合情推理中的数学式子的推理;一般对于这种题目,是通过数学表达式寻找规律,进而得到猜想.或者通过我们学习过程中的一些特例取归纳推理,注意观察题干中的式子的规律,以免出现偏差.14、【解题分析】

先将抛物线化为标准方程,进而可得出准线方程.【题目详解】因为抛物线的标准方程为:,因此其准线方程为:.故答案为:【题目点拨】本题主要考查抛物线的准线,熟记抛物线的标准方程即可,属于基础题型.15、7【解题分析】

求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【题目详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为1416=7故答案为:78【题目点拨】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.16、【解题分析】试题分析:由题意得,函数的定义域为,因为,所以函数为偶函数,当时,为单调递增函数,所以根据偶函数的性质可知:使得成立,则,解得.考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式成立,转化为,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)90(2)45【解题分析】

(1)应用排列进行计算;(2)应该用组合来进行计算。【题目详解】(1)选一名正组长和一名副组长,因为正组长与副组长属于不同的职位,所以应该用排列,.(2)选名参加省数学竞赛,都是同样参加数学竞赛,所以应该用组合,.【题目点拨】本题考查了排列和组合的基本概念和应用,属于基础题。18、(1)以为圆心,2为半径的圆上和圆内所有点;(2)应在轴正半轴上.【解题分析】

(1)设失败点为,则,,不妨设机器人速度为,则电子狗速度为,由题意得,代入坐标计算求解即可。(2)设,由题意有,代入坐标计算求解即可。【题目详解】(1)设失败点为,则,,不妨设机器人速度为,则电子狗速度为,由题意得,即,即失败点为的轨迹为以为圆心,2为半径的圆上和圆内所有点。故失败点组成的区域为:以为圆心,2为半径的圆上和圆内所有点。(2)设,由题意有,则,即,所以应在轴正半轴上点。【题目点拨】本题考查方程组法求点的轨迹方程,解决此题关键是理解题意,列出不等关系。19、(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)见证明【解题分析】

(Ⅰ)对函数进行求导,然后求出在处的切线的斜率,求出切线方程,把点代入切线方程中,求出的值;(Ⅱ)(ⅰ),,,分类讨论函数的单调性;当时,可以判断函数没有极值,不符合题意;当时,可以证明出函数有两个极值点,,故可以求出的取值范围;由(ⅰ)知在上单调递减,,且,由得,,又,.法一:先证明()成立,应用这个不等式,利用放缩法可以证明出成立;法二:令(),求导,利用单调性也可以证明出成立.【题目详解】解:(Ⅰ),又在处的切线方程为,即切线过点,(Ⅱ)(ⅰ),,,当时,,在上单调递增,无极值,不合题意,舍去当时,令,得,(),或;,在上单调递增,在上单调递减,在上单调递增,恰有个极值点,,符合题意,故的取值范围是(ⅱ)由(ⅰ)知在上单调递减,,且,由得,,又,法一:下面证明(),令(),,在上单调递增,,即(),,综上法二:令(),则,在上单调递增,,即,综上【题目点拨】本题考查了曲线切线方程的求法,考查了函数有极值时求参数取值范围问题,考查了利用导数研究函数的性质.20、(1)实数的取值范围是;(2)见解析.【解题分析】分析:(1)因为函数无极值,所以在上单调递增或单调递减.即或在时恒成立,求导分析整理即可得到答案;(2)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可,构造函数=(),求导分析整理即可.详解:(Ⅰ)函数无极值,在上单调递增或单调递减.即或在时恒成立;又,令,则;所以在上单调递减,在上单调递增;,当时,,即,当时,显然不成立;所以实数的取值范围是.(Ⅱ)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可.构造函数=(),则恒成立,故在单调递增,从而.即,亦即.得证.点睛:可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论