2024届山东省青岛市第一中学数学高二第二学期期末学业质量监测试题含解析_第1页
2024届山东省青岛市第一中学数学高二第二学期期末学业质量监测试题含解析_第2页
2024届山东省青岛市第一中学数学高二第二学期期末学业质量监测试题含解析_第3页
2024届山东省青岛市第一中学数学高二第二学期期末学业质量监测试题含解析_第4页
2024届山东省青岛市第一中学数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛市第一中学数学高二第二学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数,若,则的概率为()A. B. C. D.2.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.3.某个命题与正整数有关,如果当时命题成立,那么可推得当时命题也成立。现已知当n=8时该命题不成立,那么可推得A.当n=7时该命题不成立 B.当n=7时该命题成立C.当n=9时该命题不成立 D.当n=9时该命题成立4.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.305.从名男生和名女生中选出人去参加辩论比赛,人中既有男生又有女生的不同选法共有()A.种 B.种 C.种 D.种6.“”是双曲线的离心率为()A.充要条件 B.必要不充分条件 C.即不充分也不必要条件 D.充分不必要条件7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.刘徽应用“割圆术”得到了圆周率精确到小数点后四位的近似值,这就是著名的“徽率”.如图是应用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:,)A.12 B.24 C.36 D.488.b是区间上的随机数,直线与圆有公共点的概率为A. B. C. D.9.已知,则的值()A.都大于1 B.都小于1C.至多有一个不小于1 D.至少有一个不小于110.已知函数,为的导函数,则的值为()A.0 B.1 C. D.11.“,”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知函数,若函数有3个零点,则实数的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设直线(为参数),曲线(为参数),直线与曲线交于两点,则__________.14.已知函数,则=______.15.已知抛物线的焦点为,准线为,过点的直线交拋物线于,两点,过点作准线的垂线,垂足为,当点坐标为时,为正三角形,则______.16.求曲线在点处的切线方程是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分))已知.(I)试猜想与的大小关系;(II)证明(I)中你的结论.18.(12分)北京市政府为做好会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率.(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有该海产品4件,记一箱该海产品获利元,求的分布列,并求出数学期望.19.(12分)直三棱柱中,,,,F为棱的中点.(1)求证:;(2)点M在线段上运动,当三棱锥的体积最大时,求二面角的正弦值.20.(12分)设数列an是公差不为零的等差数列,其前n项和为Sn,a1=1.若a1(I)求an及S(Ⅱ)设bn=1an+12-121.(12分)设实部为正数的复数,满足,且复数在复平面内对应的点在第一、三象限的角平分线上.(1)求复数;(2)若复数为纯虚数,求实数的值.22.(10分)已知函数.(1)计算、、的值;(2)结合(1)的结果,试从中归纳出函数的一般结论,并证明这个结论;(3)若实数满足,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

试题分析:,作图如下,可得所求概率,故选C.考点:1、复数及其性质;2、圆及其性质;3、几何概型.2、C【解题分析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.3、A【解题分析】

根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以选A.【题目详解】根据逆否命题和原命题的真假一致性得,当时命题不成立,则命题也不成立,所以当时命题不成立,则命题也不成立,故答案为:A【题目点拨】(1)本题主要考查数学归纳法和逆否命题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)互为逆否关系的命题同真同假,即原命题与逆否命题的真假性相同,原命题的逆命题和否命题的真假性相同.所以,如果某些命题(特别是含有否定概念的命题)的真假性难以判断,一般可以判断它的逆否命题的真假性.4、A【解题分析】

本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【题目详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选A.【题目点拨】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.5、C【解题分析】

在没有任何限制的情况下减去全是男生和全是女生的选法种数,可得出所求结果.【题目详解】全是男生的选法种数为种,全是女生的选法种数为种,因此,人中既有男生又有女生的不同选法为种,故选C.【题目点拨】本题考查排列组合问题,可以利用分类讨论来求解,本题的关键在于利用间接法来求解,可避免分类讨论,考查分析问题和解决问题的能力,属于中等题.6、D【解题分析】

将双曲线标准化为,由于离心率为可得,在根据充分、必要条件的判定方法,即可得到结论.【题目详解】将双曲线标准化则根据离心率的定义可知本题中应有,则可解得,因为可以推出;反之成立不能得出.故选:.【题目点拨】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.7、B【解题分析】试题分析:模拟执行程序,可得,不满足条件;不满足条件;满足条件,推出循环,输出的值为,故选B.考点:程序框图.8、C【解题分析】

利用圆心到直线的距离小于等半径可求出满足条件的b,最后根据几何概型的概率公式可求出所求.【题目详解】解:b是区间上的随机数即,区间长度为,由直线与圆有公共点可得,,,区间长度为,直线与圆有公共点的概率,故选:C.【题目点拨】本题主要考查了直线与圆的位置关系,与长度有关的几何概型的求解.9、D【解题分析】

先假设,这样可以排除A,B.再令,排除C.用反证法证明选项D是正确的.【题目详解】解:令,则,排除A,B.令,则,排除C.对于D,假设,则,相加得,矛盾,故选D.【题目点拨】本题考查了反证法的应用,应用特例排除法是解题的关键.10、D【解题分析】

根据题意,由导数的计算公式求出函数的导数,将代入导数的解析式,计算可得答案.【题目详解】解:根据题意,,则,则;故选:.【题目点拨】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.11、A【解题分析】

利用充分条件和必要条件的定义进行判断即可.【题目详解】若,则必有.若,则或.所以是的充分不必要条件.故选:A.【题目点拨】本题主要考查充分条件和必要条件的定义和判断.12、C【解题分析】

求导计算处导数,画出函数和的图像,根据图像得到答案.【题目详解】当时,,则,;当时,,则,当时,;画出和函数图像,如图所示:函数有3个交点,根据图像知.故选:.【题目点拨】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和应用能力,画出函数图像是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:由题意得,曲线的普通方程为,直线的直角坐标方程为,所以圆心到直线的距离为,所以直线与曲线交于.考点:直线与圆的位置的弦长的计算.14、【解题分析】

先求内层函数值,再求外层函数值.【题目详解】根据题意,函数,则,则;故答案为.【题目点拨】本题主要考查分段函数求值问题,分段函数的求值问题主要是利用“对号入座”策略.15、2【解题分析】

设点在第一象限,根据题意可得直线的倾斜角为,过点作轴,垂足为,由抛物线的定义可得,,通过解直角三角形可得答案.【题目详解】设点在第一象限,过点作轴,垂足为,由为正三角形,可得直线的倾斜角为.由抛物线的定义可得,又,所以在中有:.即,解得:.故答案为:2【题目点拨】本题考查抛物线中过焦点的弦的性质,属于难题.16、【解题分析】因为,所以,则曲线在点处的切线的斜率为,即所求切线方程为,即.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)证明见解析.【解题分析】分析:(I)由题意,可取,则,,即可猜想;(II)令,则,得到函数的单调性,利用单调性即可证明猜想.详解:(I)取,则,,则有;再取,则,,则有.故猜想.(II)令,则,当时,,即函数在上单调递减,又因为,所以,即,故.点睛:本题主要考查了归纳猜想和利用函数的单调性证明不等关系式,着重考查了分析问题和解答问题的能力,以及推理论证能力.18、(1);(2)分布列见解析,期望为1.【解题分析】

(1)利用对立事件的概率计算该产品不能销售的概率值;(2)由题意知的可能取值为,,,1,160;计算对应的概率值,写出分布列,计算数学期望.【题目详解】(1)记“该产品不能销售”为事件,则(A),所以,该产品不能销售的概率为;(2)由已知,的可能取值为,,,1,160计算,,,,;所以的分布列为1160;所以均值为1.【题目点拨】本题主要考查了离散型随机变量的分布列与数学期望的应用问题,意在考查学生对这些知识的理解掌握水平.19、(1)证明见解析(2)【解题分析】

(1)在矩形中由平面几何知识证明,再证,然后由线面垂直证明线线垂直.(2)当三棱锥的体积最大时点M与F重合,如图建立空间直角坐标系,用空间向量法求二面角.【题目详解】(1)连接,由直三棱柱和,易得面,面,所以,又,,,则,又,∴,,∴,∴,又,所以面,所以(2)当三棱锥的体积最大时点M与F重合,如图建立空间直角坐标系,用向量法求二面角.,,,设平面的法向量为,平面的法向量为,易知,,,设,则,解得取,则记二面角的大小为,则,故.【题目点拨】本题考查用线面垂直证明线线垂直,用空间向量法求二面角.属于常规题.20、(I)an=2n-1,Sn【解题分析】

(Ⅰ)设等差数列an的公差为d,根据题中条件列方程组求出a1和d的值,于此可得出an(Ⅱ)将bn的通项表示为bn=141n【题目详解】(Ⅰ)由题意,得a1=1a2=a1所以an=a(Ⅱ)因为bn所以Tn【题目点拨】本题考查等差数列通项和求和公式,考查裂项求和法,在求解等差数列的问题时,一般都是通过建立首项与公差的方程组,求解这两个基本量来解决等差数列的相关问题,考查计算能力,属于中等题。21、(1);(2).【解题分析】

(1)根据待定系数法求解,设,由题意得到关于的方程组求解即可.(2)根据纯虚数的定义求解.【题目详解】(1)设,由,得又复数在复平面内对应的点在第一、三象限的角平分线上,则,即.由,解得或(舍去),∴.(2)由题意得,∵复数为纯虚数,∴解得∴实数的值为.【题目点拨】处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论