江西省玉山县二中2024届数学高二第二学期期末联考模拟试题含解析_第1页
江西省玉山县二中2024届数学高二第二学期期末联考模拟试题含解析_第2页
江西省玉山县二中2024届数学高二第二学期期末联考模拟试题含解析_第3页
江西省玉山县二中2024届数学高二第二学期期末联考模拟试题含解析_第4页
江西省玉山县二中2024届数学高二第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省玉山县二中2024届数学高二第二学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若点在椭圆内,则被所平分的弦所在的直线方程是,通过类比的方法,可求得:被所平分的双曲线的弦所在的直线方程是()A. B.C. D.2.在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,则圆的极坐标方程为A. B. C. D.3.下列几种推理中是演绎推理的序号为()A.由,,,…猜想B.半径为的圆的面积,单位圆的面积C.猜想数列,,,…的通项为D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为4.的展开式中,的系数是()A.30 B.40 C.-10 D.-205.已知双曲线的一条渐近线方程为,则此双曲线的离心率为()A. B. C. D.6.如果f(n)∈N+),那么f(n+1)-f(n)等于()A. B. C. D.7.设两个正态分布和的密度函数图像如图所示.则有()A.B.C.D.8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是A.B.C.D.9.某校1000名学生中,型血有400人,型血有250人,型血有250人,型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为60人的样本,按照分层抽样的方法抽取样本,则型血、型血、型血、型血的人要分别抽的人数为()A.24,15,15,6 B.21,15,15,9 C.20,18,18,4 D.20,12,12,610.展开式中x2的系数为()A.15 B.60 C.120 D.24011.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是A. B. C. D.12.一口袋里有大小形状完全相同的10个小球,其中红球与白球各2个,黑球与黄球各3个,从中随机取3次,每次取3个小球,且每次取完后就放回,则这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线,,若与平行,则实数的值为______.14.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.15.如图,在长方体中,,,则三棱锥的体积为____________.16.已知向量与的夹角为,,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解不等式;(2)若,求的最小值.18.(12分)已知函数.(1)当时,求的极值;(2)是否存在实数,使得与的单调区间相同,若存在,求出的值,若不存在,请说明理由;(3)若,求证:在上恒成立.19.(12分)给定椭圆,称圆为椭圆的“伴随圆”.已知点是椭圆上的点(1)若过点的直线与椭圆有且只有一个公共点,求被椭圆的伴随圆所截得的弦长:(2)是椭圆上的两点,设是直线的斜率,且满足,试问:直线是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。20.(12分)解关于x的不等式ax2+ax-1>x21.(12分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线:,直线:.(1)求曲线和直线的直角坐标方程;(2)设点的直角坐标为,直线与曲线相交于两点,求的值.22.(10分)某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:分组[160,166)[166,172)[172,178)[178,184)[184,190]人数31024103这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表):(1)求,;(2)给出正态分布的数据:,.(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169,184)的人数,求的数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

通过类比的方法得到直线方程是,代入数据得到答案.【题目详解】所平分的弦所在的直线方程是,通过类比的方法,可求得双曲线的所平分的弦所在的直线方程是代入数据,得到:故答案选A【题目点拨】本题考查了类比推理,意在考查学生的推理能力.2、A【解题分析】

求出圆C的圆心坐标为(2,0),由圆C经过点得到圆C过极点,由此能求出圆C的极坐标方程.【题目详解】在中,令,得,所以圆的圆心坐标为(2,0).因为圆经过点,所以圆的半径,于是圆过极点,所以圆的极坐标方程为.故选A【题目点拨】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.3、B【解题分析】

根据演绎推理、归纳推理和类比推理的概念可得答案.【题目详解】A.是由特殊到一般,是归纳推理.B.是由一般到特殊,是演绎推理.C.是由特殊到一般,是归纳推理.D.是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【题目点拨】本题考查对推理类型的判断,属于基础题.4、B【解题分析】

通过对括号展开,找到含有的项即可得到的系数.【题目详解】的展开式中含有的项为:,故选B.【题目点拨】本题主要考查二项式定理系数的计算,难度不大.5、B【解题分析】

由渐近线方程得出的值,结合可求得【题目详解】∵双曲线的一条渐近线方程为,∴,∴,解得,即离心率为.故选:B.【题目点拨】本题考查双曲线的渐近线和离心率,解题时要注意,要与椭圆中的关系区别开来.6、D【解题分析】分析:直接计算f(n+1)-f(n).详解:f(n+1)-f(n)故答案为D.点睛:(1)本题主要考查函数求值,意在考查学生对该知识的掌握水平.(2)不能等于,因为前面还有项没有减掉.7、A【解题分析】根据正态分布函数的性质:正态分布曲线是一条关于对称,在处取得最大值的连续钟形曲线;越大,曲线的最高点越底且弯曲较平缓;反过来,越小,曲线的最高点越高且弯曲较陡峭,选A.8、B【解题分析】试题分析:如图,几何体是四棱锥,一个侧面PBC⊥底面ABCD,底面ABCD是正方形,且边长为20,那么利用体积公式可知,故选B.考点:本题主要考查三视图、椎体的体积,考查简单几何体的三视图的运用.培养同学们的空间想象能力和基本的运算能力.点评:解决该试题的关键是由三视图可知,几何体是四棱锥,一个侧面垂直底面,底面是正方形,根据数据计算其体积.9、A【解题分析】

根据分层抽样中各层抽样比与总体抽样比相等可得出每种血型的人所抽的人数.【题目详解】根据分层抽样的特点可知,型血的人要抽取的人数为,型血的人要抽取的人数为,型血的人要抽取的人数为,型血的人要抽取的人数为,故答案为A.【题目点拨】本题考查分层抽样,考查分层抽样中每层样本容量,解题时要充分利用分层抽样中各层抽样比与总体抽样比相等来计算,考查计算能力,属于基础题.10、B【解题分析】

∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B11、C【解题分析】分析:构造函数,利用已知条件确定的正负,从而得其单调性.详解:设,则,∵,即,∴当时,,当时,,递增.又是奇函数,∴是偶函数,∴,,∵,∴,即.故选C.点睛:本题考查由导数研究函数的单调性,解题关键是构造新函数,通过研究的单调性和奇偶性,由奇偶性可以把变量值转化到同一单调区间上,从而比较大小.12、C【解题分析】每次所取的3个小球颜色各不相同的概率为:,∴这3次取球中,恰有2次所取的3个小球颜色各不相同的概率为:.本题选择C选项.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据两直线平行,列出有关的等式和不等式,即可求出实数的值.【题目详解】由于与平行,则,即,解得.故答案为:.【题目点拨】本题考查利用两直线平行求参数,解题时要熟悉两直线平行的等价条件,并根据条件列式求解,考查运算求解能力,属于基础题.14、.【解题分析】试题分析:老师必须站在正中间,则老师的位置是指定的;甲同学不与老师相邻,则甲同学站两端,故不同站法种数为:,故填:.考点:排列组合综合应用.15、3【解题分析】分析:等体积转化详解:根据题目条件,在长方体中,==3所以三棱锥的体积为3点睛:在求解三棱锥体积问题时,如果所求椎体高不好确定时,往往要通过等体积转化,找到合适的高所对应的椎体进行计算,体现了数学中的转化与化归思想,要深刻体会.16、6.【解题分析】

求出即得解.【题目详解】由题意,向量的夹角为,所以,所以.故答案为:6【题目点拨】本题主要考查向量模的计算,考查向量的数量积运算,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)利用分段讨论法去掉绝对值,解a=﹣2时对应的不等式即可;(2)由f(x)≤a|x+3|得a≥,利用绝对值三角不等式处理即可.详解:(1)当时,的解集为:(2)由得:由,得:得(当且仅当或时等号成立),故的最小值为.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.18、(1)极小值为,无极大值(2)不存在满足题意的实数.(3)见证明【解题分析】

(1)当时,可求导判断单调性,从而确定极值;(2)先求出的单调区间,假设存在,发现推出矛盾,于是不存在;(3)若,令,求的单调性即可证明不等式成立.【题目详解】解:(1)当时,,在上单调递减,在上单调递增当时,极小值为,无极大值(2),令则,在上单调递减,在上单调递增若存在实数,使得与的单调区间相同,则,此时,与在上单调递减矛盾,所以不存在满足题意的实数.(3),记.,又在上单调递增,且知在上单调递增,故.因此,得证.【题目点拨】本题主要考查利用导函数工具解决极值问题,单调性问题,不等式恒成立问题等,意在考查学生的转化能力,逻辑推理能力,分析能力及计算能力,综合性强.19、(1)(2)见解析【解题分析】试题分析:(1)分析直线的斜率是否存在,若不存在不符合题意,当存在时设直线,根据直线与圆的关系中弦心距,半径,半弦长构成的直角三角形求解即可;(2)设直线的方程分别为,设点,联立得得同理,计算,同理因为,可得,从而可证.试题解析:(1)因为点是椭圆上的点.即椭圆伴随圆得同理,计算当直线的斜率不存在时:显然不满足与椭圆有且只有一个公共点当直接的斜率存在时:设直线与椭圆联立得由直线与椭圆有且只有一个公共点得解得,由对称性取直线即圆心到直线的距离为直线被椭圆的伴随圆所截得的弦长(2)设直线的方程分别为设点联立得则得同理斜率同理因为所以三点共线点睛:本题主要考查了椭圆的方程及直线与椭圆的位置关系,是高考的必考点,属于难题.求椭圆方程的方法一般就是根据条件建立的方程,求出即可,注意的应用;涉及直线与圆锥曲线相交时,未给出直线时需要自己根据题目条件设直线方程,要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏,然后要联立方程组,得一元二次方程,利用根与系数关系写出,再根据具体问题应用上式,其中要注意判别式条件的约束作用.20、见解析.【解题分析】分析:对a分五种情况讨论,分别利用一元一次不等式与一元二次不等式的解法求解即可.详解:①当a=0时,x<-1;②当a≠0时:1∘a>0,ax2故等式左边因式分解得:ax-1x+12∘当-1<a<0时,-ax+13∘当a=-1时,x4∘当a<-1时,-ax+1点睛:本题主要考查一元二次不等式的解法、分类讨论思想的应用.属于中档题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.21、(1),;(2)17【解题分析】

(1)将直线的极坐标方程先利用两角和的正弦公式展开,然后利用代入直线和曲线的极坐标方程,即可得出直线和曲线的普通方程;(2)由直线的普通方程得出该直线的倾斜角为,将直线的方程表示为参数方程(为参数),并将直线的参数方程与曲线的普通方程联立,得到关于的二次方程,列出韦达定理,然后代入可得出答案.【题目详解】(1)由曲线:得直角坐标方程为,即的直角坐标方程为:.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论