安徽省淮北师范大学附中2024届高二数学第二学期期末达标测试试题含解析_第1页
安徽省淮北师范大学附中2024届高二数学第二学期期末达标测试试题含解析_第2页
安徽省淮北师范大学附中2024届高二数学第二学期期末达标测试试题含解析_第3页
安徽省淮北师范大学附中2024届高二数学第二学期期末达标测试试题含解析_第4页
安徽省淮北师范大学附中2024届高二数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省淮北师范大学附中2024届高二数学第二学期期末达标测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设复数满足,则()A. B. C. D.2.函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.3.定义运算=ad-bc,若复数z满足=-2,则()A.1-i B.1+i C.-1+i D.-1-i4.函数的零点个数为()A.0 B.1 C.2 D.35.设是等差数列.下列结论中正确的是()A.若,则 B.若,则C.若,则 D.若,则6.若随机变量服从正态分布,则()参考数据:若,则,,A.0.84 B.0.9759 C.0.8185 D.0.68267.若点是曲线上任意一点,则点到直线的距离的最小值为()A. B. C. D.8.的展开式的各项系数之和为3,则该展开式中项的系数为()A.2 B.8 C. D.-179.已知函数的图象在点M(1,f(1))处的切线方程是+2,则的值等于()A.0 B.1 C. D.310.已知平面向量,的夹角为,且,,则()A. B. C. D.11.下列求导运算的正确是()A.为常数 B.C. D.12.已知函数,若,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,且,则的最小值是______.14.随机变量,变量,则__________.15.在xOy平面上,将双曲线的一支及其渐近线和直线、围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周所得的几何体为,过作的水平截面,计算截面面积,利用祖暅原理得出体积为________16.若将函数表示为其中,,,…,为实数,则=______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知四棱锥的底面为菱形,且,,,与相交于点.(1)求证:底面;(2)求直线与平面所成的角的值;(3)求平面与平面所成二面角的值.(用反三角函数表示)18.(12分)已知函数有两个零点,.(Ⅰ)求的取值范围;(Ⅱ)证明:.19.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.20.(12分)已知椭圆.(1)求椭圆C的离心率e;(2)若,斜率为的直线与椭圆交于、两点,且,求的面积.21.(12分)已知函数,.(1)若在处的切线与在处的切线平行,求实数的值;(2)若,讨论的单调性;(3)在(2)的条件下,若,求证:函数只有一个零点,且.22.(10分)为了探究车流量与的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与的数据如表:时间星期一星期二星期三星期四星期五星期六星期日车流量(万辆)1234567的浓度(微克/立方米)28303541495662(1)求关于的线性回归方程;(提示数据:)(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时的浓度;(II)规定:当一天内的浓度平均值在内,空气质量等级为优;当一天内的浓度平均值在内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是,其中,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先根据复数除法得,再根据复数的模求结果.详解:因为,所以,因此选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2、B【解题分析】

求出函数图象平移后的函数解析式,再利用函数图象关于原点对称,即,求出,比较可得.【题目详解】函数的图象向右平移个单位后得到.此函数图象关于原点对称,所以.所以.当时,.故选B.【题目点拨】由的图象,利用图象变换作函数的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是个单位;而先周期变换(伸缩变换)再平移变换,平移的量是个单位.3、D【解题分析】分析:直接利用新定义,化简求解即可.详解:由=ad-bc,则满足=-2,可得:,,则.故选D.点睛:本题考查新定义的应用,复数的除法运算法则的应用,以及共轭复数,考查计算能力.4、C【解题分析】,如图,由图可知,两个图象有2个交点,所以原函数的零点个数为2个,故选C.5、C【解题分析】

先分析四个答案,A举一反例,而,A错误,B举同样反例,,而,B错误,D选项,故D错,下面针对C进行研究,是等差数列,若,则设公差为,则,数列各项均为正,由于,则,故选C.考点:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重点是对知识本质的考查.6、A【解题分析】

根据题意可知,,所以,由公式即可求出.【题目详解】根据题意可知,,所以,故选A.【题目点拨】本题主要考查正态分布曲线的特点及曲线所表示的意义,意在考查数形结合思想,化归与转化思想的应用.7、C【解题分析】点是曲线上任意一点,所以当曲线在点P的切线与直线平行时,点P到直线的距离的最小,直线的斜率为1,由,解得或(舍).所以曲线与直线的切点为.点到直线的距离最小值是.选C.8、D【解题分析】

令得各项系数和,可求得,再由二项式定理求得的系数,注意多项式乘法法则的应用.【题目详解】令,可得,,在的展开式中的系数为:.故选D.【题目点拨】本题考查二项式定理,在二项展开式中,通过对变量适当的赋值可以求出一些特定的系数,如令可得展开式中所有项的系数和,再令可得展开式中偶数次项系数和与奇数次项系数和的差,两者结合可得奇数项系数和以及偶数项系数和.9、D【解题分析】

根据导数定义,求得的值;根据点在切线方程上,求得的值,进而求得的值。【题目详解】点M(1,f(1))在切线上,所以根据导数几何意义,所以所以所以选D【题目点拨】本题考查了导数的几何意义及点在曲线上的意义,属于基础题。10、C【解题分析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.11、B【解题分析】

根据常用函数的求导公式.【题目详解】因为(为常数),,,,所以,选项B正确.【题目点拨】本题考查常用函数的导数计算.12、A【解题分析】

代入特殊值对选项进行验证排除,由此得出正确选项.【题目详解】若,符合题意,由此排除C,D两个选项.若,则不符合题意,排除B选项.故本小题选A.【题目点拨】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

直接将代数式4x+y与相乘,利用基本不等式可求出的最小值.【题目详解】由基本不等式可得,当且仅当,等号成立,因此的最小值为1,故答案为:1.【题目点拨】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14、.【解题分析】分析:先根据二项分布得,再根据,得详解:因为,所以,因为,所以点睛:二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式.15、.【解题分析】分析:由已知中过(0,y)(0≤y≤4)作Ω的水平截面,计算截面面积,利用祖暅原理得出Ω的体积.详解:在xOy平面上,将双曲线的一支及其渐近线和直线y=0,y=4围成的封闭图形记为D,如图中阴影部分.则直线y=a与渐近线交于一点A(,a)点,与双曲线的一支交于B(,a)点,记D绕y轴旋转一周所得的几何体为Ω.过(0,y)(0≤y≤4)作Ω的水平截面,则截面面积S=,利用祖暅原理得Ω的体积相当于底面面积为9π高为4的圆柱的体积,∴Ω的体积V=9π×4=36π,故答案为36π点睛:本题考查的知识点是类比推理,其中利用祖暅原理将不规则几何体的体积转化为底面面积为9π高为4的圆柱的体积,是解答的关键.祖暅原理也可以成为中国的积分,将图形的横截面的面积在体高上积分,得到几何体的体积.16、10【解题分析】法一:由等式两边对应项系数相等.即:.法二:对等式:两边连续对x求导三次得:,再运用赋值法,令得:,即三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)【解题分析】

(1)由已知中四棱锥P−ABCD的底面ABCD为菱形,且∠ABC=60°,PB=PD=AB=2,PA=PC,AC与BD相交于点O,根据平行四边形两条对角线互相平分及等腰三角形三线合一,结合线面垂直的判定定理,我们易得到结论;

(2)以O为坐标原点,建立坐标系,分别求出各顶点坐标,进而求出直线

PB的方向向量与平面PCD的法向量,代入线面夹角的向量法公式,即可求出答案;(3)求出平面的法向量,代入面面夹角的向量法公式,即可求出答案.【题目详解】(1)证明:因为ABCD为菱形,

所以O为AC,BD的中点

因为PB=PD,PA=PC,

所以PO⊥BD,PO⊥AC

所以PO⊥底面ABCD;

(2)解:因为ABCD为菱形,所以AC⊥BD,

建立如图所示空间直角坐标系

又∠ABC=60°,PA=AB=2

得,

所以则,

设平面PCD的法向量

有,所以,令

得,

直线与平面所成的角的值为;(3)设平面的法向量,因为

有,所以,令

得,,

由图知,平面与平面所成二面角为钝角,.【题目点拨】本题考查的知识点是用空间向量求直线与平面的夹角,直线与平面垂直的判定,直线与平面所成的角,其中选择合适的点及坐标轴方向,建立空间坐标系,将问题转化为一个向量问题是解答此类问题的关键.18、(Ⅰ)(Ⅱ)见解析【解题分析】分析:(1)先令,再求出,再研究函数的图像得到a的取值范围.(2)利用分析法证明不等式,再转化为证明.详解:(Ⅰ)由题意,设,则,当时,函数单调递减,又,故在区间上,在区间上.所以在区间上函数单调递增,在区间上函数单调递减.故.又,当时,,所以.(Ⅱ)不妨设,由(Ⅰ)可知.设函数,要证,只需证即可.又,故,由(Ⅰ)可知函数在区间上单调递增,故只需证明,又,即.设,,又,.所以在区间上单调递减,,所以成立,故.点睛:(1)本题主要考查利用导数研究函数图像和性质,考查利用导数证明不等式和分析法证明不等式,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)j解答本题的关键有三点,其一是转化为,其二是转化为,其三是证明在区间上单调递减.19、(1);(2)或【解题分析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想.第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1+y2,y1y2,,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的方程.试题解析:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则.因为,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化为y2-4my+2=1.y1+y2=4m,y1y2=2.…6分设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直线l的方程为,或.…12分考点:抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题.20、(1);(2).【解题分析】

(1)将椭圆的方程化为标准方程,得出、与的等量关系,可得出椭圆的离心率的值;(2)设直线的方程为,设点、,将的值代入得出椭圆的方程,将直线的方程与椭圆联立,消去,列出韦达定理,利用弦长公式结合条件可求出,利用点到直线的距离公式计算出原点到直线的距离,然后利用三角形的面积公式可得出的面积.【题目详解】(1)椭圆,椭圆长半轴长为,短半轴长为,;(2)设斜率为的直线的方程为,且、,,椭圆的方程为,由,.消去得,又有.,解得:满足,直线的方程为.故到直线的距离,.【题目点拨】本题考查椭圆离心率的计算,考查椭圆中的弦长与三角形面积的计算,一般将直线的方程与椭圆的方程联立,利用韦达定理与弦长公式进行计算求解,难点在于计算量大,属于中等题.21、(1)(2)见解析(3)见解析【解题分析】分析:(1)先求一阶导函数,,用点斜式写出切线方程(2)先求一阶导函数的根,求解或的解集,判断单调性。(3)根据(2)的结论,求出极值画出函数的示意图,分析函数只有一个零点的等价条件是极小值大于零,函数在是减函数,故必然有一个零点。详解:(1)因为,所以;又。由题意得,解得(2),其定义域为,又,令或。①当即时,函数与随的变化情况如下:当时,,当时,。所以函数在单调递增,在和单调递减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论