




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省淮北师范大学附中数学高二第二学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆(x+1)2+y2=12的圆心为C,点P是直线l:mx-y-5m+4=0上的点,若圆C上存在点Q使∠CPQ=A.1-306C.0,1252.已知向量满足,且与的夹角为,则()A. B. C. D.3.已知正项数列{an}的前n项和为Sn,若{an}和{}都是等差数列,且公差相等,则a6=()A. B. C.. D.14.设,则的定义域为().A.(-4,0)∪(0,4)B.(-4,-1)∪(1,4)C.(-2,-1)∪(1,2)D.(-4,-2)∪(2,4)5.已知复数Z满足:,则()A. B. C. D.6.在极坐标系中,设圆与直线交于两点,则以线段为直径的圆的极坐标方程为()A. B.C. D.7.等差数列的前项和是,且,,则()A.39 B.91 C.48 D.518.将偶函数的图象向右平移个单位长度后,得到的曲线的对称中心为()A. B.C. D.9.已知函数若关于的方程有7个不等实根,则实数的取值范围是()A. B. C. D.10.某地气象台预计,7月1日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则A. B. C. D.11.圆与圆的公切线有几条()A.1条 B.2条 C.3条 D.4条12.某几何体的三视图如图所示,其中圆的半径均为,则该几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是______.14.复数的共轭复数________.(其中为虚数单位)15.若双曲线的渐近线方程为y=±x,则满足条件的一个双曲线的方程为____________16.设随机变量的概率分布列如下图,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本,当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元),每件售价为0.05万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?18.(12分)某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.(1)求观光长廊PQST所在的曲线的方程;(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?19.(12分)第18届国际篮联篮球世界杯将于2019年8月31日至9月15日在中国北京、广州等八座城市举行.届时,甲、乙、丙、丁四名篮球世界杯志愿者将随机分到、、三个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人不在同一个岗位服务的概率;(2)设随机变量为这四名志愿者中参加岗位服务的人数,求的分布列及数学期望.20.(12分)设函数,(为常数),.曲线在点处的切线与轴平行(1)求的值;(2)求的单调区间和最小值;(3)若对任意恒成立,求实数的取值范围.21.(12分)以原点为极点,轴的非负半轴为极轴建立极坐标系,已知某圆的极坐标方程为.(1)将极坐标方程化为直坐标方程,并选择恰当的参数写出它的参数方程;(2)若点在该圆上,求的最大值和最小值.22.(10分)某村计划建造一个室内面积为800平米的矩形蔬菜温室,在温室内沿左右两侧与后墙内侧各保留1米的通道,沿前侧内墙保留3米宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大的种植面积是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
问题转化为C到直线l的距离d⩽4.【题目详解】如图所示:过P作圆C的切线PR,切点为R,则∠CPQ⩽∠CPR,∴sin60°⩽sin∴CPmin⩽4,则C到直线l∴|-m-0-5m+4|m2故选:C.【题目点拨】本题考查了直线与圆的位置关系,属中档题.2、A【解题分析】
根据向量的运算法则展开后利用数量积的性质即可.【题目详解】.故选:A.【题目点拨】本题主要考查数量积的运算,属于基础题.3、B【解题分析】
设等差数列{an}和{}的公差为d,可得an=a1+(n﹣1)d,=+(n﹣1)d,于是==+d,=+2d,化简整理可得a1,d,即可得出.【题目详解】设等差数列{an}和{}的公差为d,则an=a1+(n﹣1)d,=+(n﹣1)d,∴==+d,=+2d,平方化为:a1+d=d2+2d,2a1+3d=4d2+4d,可得:a1=d﹣d2,代入a1+d=d2+2d,化为d(2d﹣1)=0,解得d=0或.d=0时,可得a1=0,舍去.∴,a1=.∴a6=.故答案为:B【题目点拨】(1)本题主要考查等差数列的通项和前n项和,意在考查学生岁这些知识的掌握水平和分析推理计算能力.(2)本题的关键是利用==+d,=+2d求出d.4、B【解题分析】试题分析:要使函数有意义,则解得,有意义,须确保两个式子都要有意义,则,故选.考点:1.函数的定义域;2.简单不等式的解法.5、B【解题分析】
由复数的四则运算法则求出复数,由复数模的计算公式即可得到答案.【题目详解】因为,则,所以,故选B.【题目点拨】本题考查复数的化简以及复数模的计算公式,属于基础题.6、A【解题分析】试题分析:以极点为坐标原点,极轴为轴的正半轴,建立直角坐标系,则由题意,得圆的直角坐标方程,直线的直角坐标方程.由,解得或,所以,从而以为直径的圆的直角坐标方程为,即.将其化为极坐标方程为:,即故选A.考点:简单曲线的极坐标方程.7、B【解题分析】解:由题意结合等差数列的通项公式有:,解得:,数列的前13项和:.本题选择B选项.8、D【解题分析】
根据函数为偶函数求出函数解析式,根据余弦函数的图象和性质求对称轴即可.【题目详解】∵为偶函数,∴,∴.令,得.故选:D【题目点拨】本题主要考查了诱导公式和余弦函数的图象与性质,属于中档题.9、C【解题分析】分析:画出函数的图象,利用函数的图象,判断f(x)的范围,然后利用二次函数的性质求解a的范围.详解:函数的图象如图:关于f2(x)+(a﹣1)f(x)﹣a=0有7个不等的实数根,即[f(x)+a][f(x)﹣1]=0有7个不等的实数根,f(x)=1有3个不等的实数根,∴f(x)=﹣a必须有4个不相等的实数根,由函数f(x)图象可知﹣a∈(1,2),∴a∈(﹣2,﹣1).故选:C.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.10、B【解题分析】解:因为5月1日浔阳区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设A为下雨,B为刮风,则11、C【解题分析】
首先求两圆的圆心距,然后判断圆心距与半径和或差的大小关系,最后判断公切线的条数.【题目详解】圆,圆心,,圆,圆心,,圆心距两圆外切,有3条公切线.故选C.【题目点拨】本题考查了两圆的位置关系,属于简单题型.12、A【解题分析】该几何体为一棱长为6的正方体掏掉一个棱长为2的小正方体,再放置进去一个半径为1的球,所以体积为.故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:①所求概率为,计算即得结论;
②利用取到红球次数可知其方差为;通过每次取到红球的概率可知所求概率为.详解:①从中任取3球,恰有一个白球的概率是,故正确;
②从中有放回的取球6次,每次任取一球,
取到红球次数,其方差为,故正确;
③从中有放回的取球3次,每次任取一球,每次取到红球的概率,
∴至少有一次取到红球的概率为,故正确.
故答案为:①②③.点睛:本题主要考查命题的真假判断,涉及概率的计算,考查学生的计算能力.14、【解题分析】
根据复数除法法则,分子分母同乘分母的共轭复数化简成的形式,再根据共轭复数的定义求出所求即可.【题目详解】,复数的共轭复数是.故答案为:.【题目点拨】本题主要考查复数代数形式的乘除运算、共轭复数的定义,考查基本运算求解能力,属于基础题.15、=1(答案不唯一)【解题分析】
由双曲线标准方程与渐近线方程的关系可得.【题目详解】渐近线方程为y=±x的双曲线方程为,则就是其中之一.故答案为.【题目点拨】本题考查双曲线的几何性质:渐近线,与双曲线共渐近线的双曲线方程为,此方程对焦点没有要求,即焦点可在轴上,也可在轴上.16、【解题分析】
利用概率之和为求得的值.解,求得的值,将对应的概率相加求得结果.【题目详解】根据,解得.解得或,故所求概率为.【题目点拨】本小题主要考查分布列的概率计算,考查含有绝对值的方程的解法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用利润总售价总成本,根据的范围分段考虑关于的解析式,注意每一段函数对应的定义域;(2)求解中的每段函数的最大值,然后两段函数的最大值作比较得到较大值,即为最大利润.【题目详解】(1)当时,,当时,,所以;(2)当时,,所以当时,(万元);当时,,取等号时即,所以(万元)(万元),所以年产量为千件时,所获利润最大.【题目点拨】本题考查二次函数模型以及基本不等式在实际问题中应用,难度一般.(1)求解实际问题中的函数解析式时,一定要注意函数的定义域;(2)利用基本不等式求解最值时要注意取等号的条件.18、(1)(2)【解题分析】
(1)由题意知,QS的轨迹为圆的一部分,PQ的轨迹为双曲线的一部分,ST的轨迹为双曲线的一部分,分别求出对应的轨迹方程即可;(2)由题意设点M(x,y),计算|MA|2的解析式,再求|MA|的最小值与对应的x、y的值.【题目详解】解:(1)①由题意知,QS段上的任意一点到中心点O的距离都相等,QS的轨迹为圆的一部分,其中r=4,圆心坐标为O,即x≥0、y≥0时,圆的方程为x2+y2=16;②PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,PQ的轨迹为双曲线的一部分,且c=4,a=4,即x<0、y>0时,双曲线方程为1;③ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,ST的轨迹为双曲线的一部分,且c=4,a=4,即x>0、y<0时,双曲线方程为1;综上,x≥0、y≥0时,曲线方程为x2+y2=16;x<0、y>0时,曲线方程为1;x>0、y<0时,曲线方程为1;[注]可合并为1;(2)由题意设点M(x,y),其中1,其中x≤0,y≥0;则|MA|2y2x2+16=232;当且仅当x=﹣2时,|MA|取得最小值为4;此时y=42;∴点M(﹣2,2).【题目点拨】本题考查了圆、双曲线的定义与标准方程的应用问题,解题的关键是利用定义求出双曲线和圆的标准方程.19、(1)(2)见解析【解题分析】
(1)先记甲、乙两人同时参加同一岗位服务为事件,根据题意求出,再由,即可得出结果;(2)根据题意,先确定可能取得的值,分别求出对应概率,即可得出分布列,从而可计算出期望.【题目详解】解:(1)记甲、乙两人同时参加同一岗位服务为事件,那么.所以,甲、乙两人不在同一岗位服务的概率是.(2)由题意,知随机变量可能取得的值为1,2.则.所以.所以所求的分布列是所以.【题目点拨】本题主要考查古典概型以及离散型随机变量的分布列与期望,熟记概念以及概率计算公式即可,属于常考题型.20、(1)k=1;(2)的单调递减区间为,单调递增区间为,最小值为;(3).【解题分析】
(1)首先求得导函数,然后利用导函数研究函数切线的性质得到关于k的方程,解方程即可求得k的值;(2)首先确定函数的定义域,然后结合导函数的符号与原函数的单调性求解函数的单调区间和函数的最值即可;(3)用问题等价于,据此求解实数a的取值范围即可.【题目详解】(1),,因为曲线在点处的切线与轴平行,所以,所以.(2),定义域为,令,得,当变化时,和的变化如下表:由上表可知,的单调递减区间为,单调递增区间为,最小值为.(3)若对任意成立,则,即,解得:.【题目点拨】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机通信技术试题及答案
- 行政法学研讨会试题及答案分享
- 对火灾应急预案的评价(3篇)
- 儿科火灾应急演练预案(3篇)
- 计算机硬件选型与配置试题及答案
- 2025年企业整合与风险管理的策略探讨及试题及答案
- 2025年软件设计师考试的职业生涯规划试题及答案
- 2025年竞争优势构建与风险管理试题及答案
- 行政管理法律法规试题及答案
- 2025企业技术培训生劳动合同模板
- 年产4亿片阿奇霉素片的精烘包及车间设计
- 2023年全国统一高考生物试卷(广东卷)(含答案与解析)
- 2023年《中药商品学》期末考试复习题库(含答案)
- 威努特防火墙配置手册
- 模具工装检具加工申请单
- 南京求真中学新初一分班英语试卷含答案
- 山东省各地市地图课件
- 预见性思维在护理工作中的应用课件
- 新疆维吾尔阿克苏地区2023-2024学年三年级数学第一学期期末学业水平测试试题含答案
- 抚养费一次性付清协议书
- 每日工作流程物业保安主管经理
评论
0/150
提交评论