2024届河北省衡水市枣强县枣强中学数学高二第二学期期末调研模拟试题含解析_第1页
2024届河北省衡水市枣强县枣强中学数学高二第二学期期末调研模拟试题含解析_第2页
2024届河北省衡水市枣强县枣强中学数学高二第二学期期末调研模拟试题含解析_第3页
2024届河北省衡水市枣强县枣强中学数学高二第二学期期末调研模拟试题含解析_第4页
2024届河北省衡水市枣强县枣强中学数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省衡水市枣强县枣强中学数学高二第二学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为(

)A. B. C. D.2.已知复数,则的共轭复数()A. B. C. D.3.定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列做等差向量列,这个常向量叫做等差向量列的公差.已知向量列是以为首项,公差的等差向量列.若向量与非零向量)垂直,则()A. B. C. D.4.准线为的抛物线标准方程是()A. B. C. D.5.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是()A.甲 B.乙 C.丙 D.丁6.函数f(x)与它的导函数f'(x)的大致图象如图所示,设g(x)=f(x)exA.15 B.25 C.37.某程序框图如图所示,则该程序运行后输出的值是()A.0 B.-1 C.-2 D.-88.已知,则()A. B.3 C. D.9.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r310.函数的导函数为,对任意的,都有成立,则()A. B.C. D.与大小关系不确定11.若函数,则()A.0 B.8 C.4 D.612.己知变量x,y的取值如下表:x3456y2.5344.5由散点图分析可知y与x线性相关,且求得回归方程为,据此预测:当时,y的值约为A.5.95 B.6.65 C.7.35 D.7二、填空题:本题共4小题,每小题5分,共20分。13.已知点,,,则△的面积是________14.的展开式中,的系数为__________.(用数字作答)15.从集合随机取一个为,从集合随机取一个为,则方程可以表示___个不同的双曲线.16.2014年11月,北京成功举办了亚太经合组织第二十二次领导人非正式会议,出席会议的有21个国家和地区的领导人或代表.其间组委会安排这21位领导人或代表合影留念,他们站成两排,前排11人,后排10人,中国领导人站在第一排正中间位置,美俄两国领导人站在与中国领导人相邻的两侧,如果对其他领导人或代表所站的位置不做要求,那么不同的排法共有种(用排列组合表示).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为.已知,.(1)若,证明:数列是等差数列;(2)求数列的前项和.18.(12分)已知函数(,e为自然对数的底数).(1)若,求的最大值;(2)若在R上单调递减,①求a的取值范围;②当时,证明:.19.(12分)为了调查患胃病是否与生活规律有关,在某地对名岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共人,未患胃病者生活规律的共人.(1)根据以上数据列出列联表;(2)能否在犯错误的概率不超过的前提下认为“岁以上的人患胃病与否和生活规律有关系?”附:,其中.20.(12分)设,.(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.21.(12分)已知椭圆的左焦点为,右顶点为,上顶点为,,(为坐标原点).(1)求椭圆的方程;(2)定义:曲线在点处的切线方程为.若抛物线上存在点(不与原点重合)处的切线交椭圆于、两点,线段的中点为.直线与过点且平行于轴的直线的交点为,证明:点必在定直线上.22.(10分)如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少?(圆柱体积公式:,为圆柱的底面枳,为圆柱的高)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由题意结合排列组合公式和古典概型计算公式求解概率值即可.【题目详解】由乘法原理可知,有放回摸球可能的方法有种,若第一次摸出白球,第二次摸出黑球,有种,若第一次摸出黑球,第二次摸出白球,有种,结合古典概型计算公式可得,两次摸出的球恰好颜色不同的概率为.本题选择C选项.【题目点拨】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.2、A【解题分析】

对复数进行化简,然后得到,再求出共轭复数.【题目详解】因为,所以,所以的共轭复数故选A项.【题目点拨】本题考查复数的四则运算,共轭复数的概念,属于简单题.3、D【解题分析】

先根据等差数列通项公式得向量,再根据向量垂直得递推关系,最后根据累乘法求结果.【题目详解】由题意得,因为向量与非零向量)垂直,所以因此故选:D【题目点拨】本题考查等差数列通项公式、向量垂直坐标表示以及累乘法,考查综合分析求解能力,属中档题.4、A【解题分析】准线为的抛物线标准方程是,选A.5、A【解题分析】

①假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;②假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;③假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.6、B【解题分析】

结合图象可得到f'(x)-f(x)<0成立的x的取值范围,从而可得到g(x)【题目详解】由图象可知,y轴左侧上方图象为f'(x)的图象,下方图象为对g(x)求导,可得g'(x)=f'(x)-f(x)ex,结合图象可知x∈(0,1)和x∈(4,5)时,f'(x)-f(x)<0,即g(x)在0,1和【题目点拨】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.7、B【解题分析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出.本题选择B选项.8、D【解题分析】

根据正弦的倍角公式和三角函数的基本关系式,化为齐次式,即可求解,得到答案.【题目详解】由题意,可得,故选D.【题目点拨】本题主要考查了正弦的倍角公式,以及三角函数的基本关系式的化简、求值,着重考查了推理与运算能力,属于基础题.9、A【解题分析】

根据正相关和负相关以及相关系数的知识,选出正确选项.【题目详解】由散点图可知图(1)与图(3)是正相关,故r1>0,r3>0,图(2)与图(4)是负相关,故r2<0,r4<0,且图(1)与图(2)的样本点集中在一条直线附近,因此r2<r4<0<r3<r1.故选:A.【题目点拨】本小题主要考查散点图,考查相关系数、正相关和负相关的理解,属于基础题.10、B【解题分析】

通过构造函数,由导函数,结合,可知函数是上的增函数,得到,即可得到答案.【题目详解】构造函数,则,故函数是上的增函数,所以,即,则.故选B.【题目点拨】本题的难点在于构造函数,由,构造是本题的关键,学生在学习中要多积累这样的方法.11、B【解题分析】

根据函数解析式可求得,结合函数奇偶性可得到,从而得到结果.【题目详解】由题意得:本题正确选项:【题目点拨】本题考查函数性质的应用,关键是能够根据解析式确定为定值,从而求得结果.12、B【解题分析】

先计算数据的中心点,代入回归方程得到,再代入计算对应值.【题目详解】数据中心点为代入回归方程当时,y的值为故答案选B【题目点拨】本题考查了数据的回归方程,计算数据中心点代入方程是解题的关键,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

首先求出的直线方程:,线段的长度;然后由点到直线的距离公式求出点到直线的距离,根据三角形的面积公式即可求解。【题目详解】因为,由两点间的距离公式可得,又所以的直线方程为,整理可得:,由点到直线的距离公式,所以△的面积故答案为:【题目点拨】本题考查平面解析几何中的两点间的距离公式、点斜式求直线方程、点到直线的距离公式,属于基础计算题。14、1【解题分析】

写出二项展开式的通项公式,令的指数为2,可求得项是第几项,从而求得系数.【题目详解】展开式通项为,令,则,∴的系数为.故答案为1.【题目点拨】本题考查二项式定理,考查二项展开式通项公式.解题时二项展开式的通项公式,然后令的指数为所求项的指数,从而可求得,得出结论.15、8【解题分析】

根据双曲线方程的特点,结合分类和分步计数原理直接求解即可.【题目详解】因为方程表示双曲线,所以.因此可以分成两类:第一类:从集合中取一个正数,从集合取一个负数,有种不同的取法;第二类:从集合中取一个负数,从集合取一个正数,有种不同的取法.所以一共有种不同的方法.故答案为:8【题目点拨】本题考查了双曲线方程的特点,考查了分类和分步计数原理,考查了数学运算能力.16、【解题分析】试题分析:先让中国领导人站在第一排正中间位置共一种站法,再让美俄两国领导人站在与中国领导人相邻的两侧共站法,最后,另外个领导人在前后共位置任意站,共有种站法,所以,根据分步计数乘法原理,不同的排法共有种,故答案为.考点:排列组合及分步计数乘法原理的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】

(1)由题意可得,再由等差数列的定义即可得证;(2)求得,即,再由数列的分组求和,结合等差数列和等比数列的求和公式,化简可得所求和.【题目详解】(1)因为,所以可化为,又,所以是首项为2,公差为2的等差数列.(2)由(1),知,所以,所以.【题目点拨】本题主要考查等差数列的定义、通项公式、等差(等比)数列的前项和公式,以及数列的分组求和法的应用.18、(1)1;(2)①,②证明见解析.【解题分析】

(1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.(2)①求出对恒成立,化为对恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.【题目详解】(1)时,时,,在上单调递增时,,在上单调递减(2)由①在R上单调递减,对恒成立,即对恒成立,记,则对恒成立,当时,,符题当时,时,,在上单调递减时,,在上单调递增;当时,时,,在上单调递减时,,在上单调递增;综上:②当时,在上单调递减,,,,.要证,即证下面证明令,,则,在区间上单调递增,,得证【题目点拨】本题考查了导函数在研究函数单调性的应用,分析法证明不等式,考查了分类讨论的思想,综合性比较强,属于难题.19、(1)见解析;(2)见解析【解题分析】分析:(1)由已知作出列联表即可;

(2)由列联表,结合计算公式,求得=,,由此判断出两个量之间的关系.详解:(1)由已知可列2×2列联表:患胃病未患胃病总计生活规律20200220生活不规律60260320总计80460540(2)根据列联表中的数据,得K2的观测值,因为9.638>6.635,因此在犯错误的概率不超过0.01的前提下认为“40岁以上的人患胃病与否和生活规律有关”.点睛:本题考查独立性检验的应用,解题的关键是给出列联表,再熟练运用公式求出卡方的值,根据所给的表格判断出有关的可能性.20、(Ⅰ)M=4;(Ⅱ)[1,+∞).【解题分析】分析:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max,进一步利用分离参数法,即可求得实数a的取值范围;详解:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M∵g(x)=x3﹣x2﹣3,∴∴g(x)在(0,)上单调递减,在(,2)上单调递增∴g(x)min=g()=﹣,g(x)max=g(2)=1∴g(x)max﹣g(x)min=∴满足的最大整数M为4;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max.由(I)知,在[,2]上,g(x)max=g(2)=1∴在[,2]上,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x2lnx恒成立记h(x)=x﹣x2lnx,则h′(x)=1﹣2xlnx﹣x且h′(1)=0∴当时,h′(x)>0;当1<x<2时,h′(x)<0∴函数h(x)在(,1)上单调递增,在(1,2)上单调递减,∴h(x)max=h(1)=1∴a≥1点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.21、(1);(2)见解析.【解题分析】

(1)由得出,再由得出,求出、的值,从而得出椭圆的标准方程;(2)设点的坐标为,根据中定义得出直线的方程,并设点、,,将直线的方程与椭圆的方程联立,列出韦达定理,利用中点坐标公式求出点的坐标,得出直线的方程与的方程联立,求出点的坐标,可得出点所在的定直线的方程.【题目详解】(1)由,可知,即.,,,可得,联立.得,则,所以,所以椭圆的方程为;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论