




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省粤西五校联考数学高二下期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二面角为,、是棱上的两点,、分别在半平面、内,,且,,则的长为A.1 B. C. D.2.已知随机变量,其正态分布曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点数估计值为()(附:则)A.6038 B.6587 C.7028 D.75393.若随机变量的分布列如下表:-2-101230.10.20.20.30.10.1则当时,实数的取值范围是A. B.C. D.4.已知则a,b,c的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>b>a5.已知函数,,若关于的方程有6个不相等的实数解,则实数的取值范围是()A. B. C. D.6.已知复数,则()A.1 B. C. D.57.已知展开式的常数项为15,则()A. B.0 C.1 D.-18.是第四象限角,,则等于()A. B.C. D.9.已知满足,其中,则的最小值为()A. B. C. D.110.已知是定义在上的函数,且对任意的都有,,若角满足不等式,则的取值范围是()A. B. C. D.11.已知椭圆,则以点为中点的弦所在直线方程为()A. B.C. D.12.如图,在正方体的八个顶点中任取两个点作直线,与直线异面且夹角成的直线的条数为().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______14.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)15.若曲线上在点处的切线与直线垂直,则点的坐标为______.16.已知函数,则函数的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:男生女生总计购买数学课外辅导书超过本购买数学课外辅导书不超过本总计(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.附:,.18.(12分)已知正项数列中,且(1)分别计算出的值,然后猜想数列的通项公式;(2)用数学归纳法证明你的猜想.19.(12分)已知,设命题:函数在上是增函数;命题:关于的方程无实根.若“且”为假,“或”为真,求实数的取值范围.20.(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析。(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校三人在某大学自主招生中通过的概率分别为,,,用随机变量X表示三人在该大学自主招生中通过的人数,求X的分布列及期望.参考公式:.参考数据:21.(12分)已知函数().(Ⅰ)若在处的切线过点,求的值;(Ⅱ)若恰有两个极值点,().(ⅰ)求的取值范围;(ⅱ)求证:.22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知线C的极坐标方程为:ρ=2sin(θ+),过P(0,1)的直线l的参数方程为:(t为参数),直线l与曲线C交于M,N两点.(1)求出直线l与曲线C的直角坐标方程.(2)求|PM|2+|PN|2的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:考点:点、线、面间的距离计算2、B【解题分析】∵随机变量,∴,∴,∴落入阴影部分的点的个数的估计值为个.选B.3、C【解题分析】分析:根据概率为0.8,确定实数的取值范围详解:因为,所以实数的取值范围为选C.点睛:本题考查分布列及其概率,考查基本求解能力.4、D【解题分析】
对于看成幂函数,对于与的大小和1比较即可【题目详解】因为在上为增函数,所以,由因为,,,所以,所以选择D【题目点拨】本题主要考查了指数、对数之间大小的比较,常用的方法:1、通常看成指数、对数、幂函数比较.2、和0、1比较.5、A【解题分析】令g(x)=t,则方程f(t)=λ的解有3个,由图象可得,0<λ<1.且三个解分别为,则,,均有两个不相等的实根,则△1>0,且△2>0,且△3>0,即16−4(2+5λ)>0且16−4(2+3λ)>0,解得,当0<λ<时,△3=16−4(1+4λ−)>0即3−4λ+>0恒成立,故λ的取值范围为(0,).故选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识.6、C【解题分析】.故选7、A【解题分析】
先求出二项式展开式的通项公式,再令的幂指数等于0,求得的值,即可求得展开式中的常数项,再根据常数项为15,求得的值.【题目详解】解:二项式的展开式的通项公式为,令,求得,可得展开式中的常数项为,由此求得,故选:.【题目点拨】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.8、B【解题分析】
∵α是第四象限角,∴sinα<0.∵,∴sinα=,故选B.9、C【解题分析】
令,利用导数可求得单调性,确定,进而得到结果.【题目详解】令,则.,由得:;由得:,在上单调递减,在上单调递增,,即的最小值为.故选:.【题目点拨】本题考查函数最值的求解问题,关键是能够利用导数确定函数的单调性,进而确定最值点.10、A【解题分析】
构造新函数,由可得为单调减函数,由可得为奇函数,从而解得的取值范围.【题目详解】解:令因为,所以为R上的单调减函数,又因为,所以,即,即,所以函数为奇函数,故,即为,化简得,即,即,由单调性有,解得,故选A.【题目点拨】本题考查了函数性质的综合运用,解题的关键是由题意构造出新函数,研究其性质,从而解题.11、A【解题分析】
利用点差法求出直线的斜率,再利用点斜式即可求出直线方程.【题目详解】解:设以点为中点的弦与椭圆交于点,,,,则,,分别把点,的坐标代入椭圆方程得:,两式相减得:,,直线的斜率,以点为中点的弦所在直线方程为:,即,故选:.【题目点拨】本题主要考查了点差法解决中点弦问题,属于中档题.12、B【解题分析】
结合图形,利用异面直线所成的角的概念,把与A1B成60°角的异面直线一一列出,即得答案.【题目详解】在正方体ABCD﹣A1B1C1D1的八个顶点中任取两个点作直线,与直线A1B异面且夹角成60°的直线有:AD1,AC,D1B1,B1C,共4条.故选B.【题目点拨】本题考查异面直线的定义及判断方法,异面直线成的角的定义,体现了数形结合的数学思想,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【题目详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【题目点拨】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.14、【解题分析】
利用待定系数法求出分段函数的解析式,再由y值大于62求解即可得解.【题目详解】当x∈(0,12]时,设f(x)=a(x﹣10)2+80,过点(12,78)代入得,a则f(x)(x﹣10)2+80,当x∈(12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即y=﹣x+90,由题意得,或得4<x≤12或12<x<28,所以4<x<28,则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳,故答案为(4,28).【题目点拨】本题主要考查了待定系数法求函数解析式及分段函数解不等式,属于基础题.15、【解题分析】
设切点,求得的导数,可得切线的斜率,由两直线垂直的条件可得,即为点的坐标.【题目详解】设切点,的导数为,可得切线的斜率为,由切线与直线垂直,可得,解得,即.故答案为:【题目点拨】本题考查了导数的几何意义以及直线垂直斜率之间的关系,属于基础题.16、【解题分析】
对求导,然后令,判断的单调性,再根据的值确定函数的最大值.【题目详解】,,令,,,令,则,令,则,当时,,当时,,在上单调递减,在,上单调递增,函数在上单调递减,根据复合函数的单调性可知,当,即,时,,函数的最大值为.故答案为.【题目点拨】本题考查了利用导数研究函数的单调性和最值和三角函数求值,考查转化思想以及计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解题分析】试题分析:(I)根据表格数据利用公式:求得的值,与邻界值比较,即可得到结论;(II)利用列举法,确定基本事件的个数以及满足条件的事件个数,利用古典概型概率公式可求出恰有名男生被抽到的概率.试题解析:(Ⅰ)的观测值,故有的把握认为购买数学课外辅导书的数量与性别有关.(Ⅱ)依题意,被抽到的女生人数为,记为,;男生人数为,记为,,,,则随机抽取人,所有的基本事件为,,,,,,,,,,,,,,,,,,,共个.满足条件的有,,,,,,,,,,,,共个,故所求概率为18、(1);;(2)见解析.【解题分析】
(1)逐个计算计算出的值,再通过观察可猜。(2)先检验n=1满足,再假设时(*)式成立,即,下证即可证明。【题目详解】(1)令得化简得,解得或.令得化简得,解得或令得化简得,解得或猜想(*).①当时,,(*)式成立;②假设时(*)式成立,即,那么当时,化简得所以当时,(*)式也成立.综上:由①②得当时,【题目点拨】本题考查归纳-猜想-证明,这一常见思维方式,而与自然数相关的结论证明我们常用数学归纳法。19、【解题分析】
先求命题和命题为真时的范围,若“且”为假,“或”为真,则命题与命题一真一假,分类讨论真假与真假时的范围,再取并集即可.【题目详解】解:命题:在R上单调递增,,命题:关于的方程无实根,且,,解得命题且为假,或为真,命题与一真一假,①真假,则②真假,则所以的取值范围是【题目点拨】本题考查指数函数的单调性、一元二次方程根与判别式的关系,简单逻辑的判断方法,考查了推理能力与计算能力.20、(1)见解析;(2)见解析【解题分析】
(1)由题可得表格,再计算,与6.635比较大小即可得到答案;(2)随机变量X的可能取值为0,1,2,3,分别利用乘法原理计算对应概率,从而求得分布列和数学期望.【题目详解】(1)2×2列联表如下通过未通过总计甲校402060乙校203050总计6050110由算得,,所以有99%的把握认为学生的自主招生通过情况与所在学校有关(2)设A,B,C自主招生通过分别记为事件M,N,R,则∴随机变量X的可能取值为0,1,2,3.,所以随机变量X的分布列为:X0123P【题目点拨】本题主要考查独立性检验统计案例,随机变量的分布列和数学期望,意在考查学生的分析能力,转化能力及计算能力,比较基础.21、(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)见证明【解题分析】
(Ⅰ)对函数进行求导,然后求出在处的切线的斜率,求出切线方程,把点代入切线方程中,求出的值;(Ⅱ)(ⅰ),,,分类讨论函数的单调性;当时,可以判断函数没有极值,不符合题意;当时,可以证明出函数有两个极值点,,故可以求出的取值范围;由(ⅰ)知在上单调递减,,且,由得,,又,.法一:先证明(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏南京中医药大学青年特聘教授选聘工作模拟试卷及答案详解(名师系列)
- 2025江苏省宿迁经济技术开发区教育系统招聘教师42人考前自测高频考点模拟试题及答案详解(全优)
- 班组安全季度培训教案课件
- 班组安全培训鉴定意见课件
- 2025年广东技术师范大学招聘辅导员40人模拟试卷及答案详解(夺冠)
- 2025北京中国音乐学院第一批招聘10人考前自测高频考点模拟试题附答案详解(完整版)
- 超精密加工新方法-洞察与解读
- 2025河北沧州孟村饶安高级中学招聘1人模拟试卷有答案详解
- 2025广西百色市第三人民医院(百色市应急医院)公开招聘5人考前自测高频考点模拟试题及答案详解参考
- 班组安全培训的原因
- 2025年国企面试题型及答案
- 【道法】2025~2026学年度第一学期七年级上册道德与法治第一次月考试卷
- 5年(2021-2025)高考1年模拟物理真题分类汇编专题04 机械能守恒、动量守恒及功能关系(广东专用)(解析版)
- 2025湖南生物机电职业技术学院单招《语文》考试历年机考真题集【必考】附答案详解
- 2024年齐齐哈尔市公安局招聘警务辅助人员真题
- 4.2《让家更美好》 课件 2025-2026道德与法治七年级上册 统编版
- 2025耿马傣族佤族自治县司法局面向社会公开招聘司法协理员(10人)考试参考题库及答案解析
- 第四版(2025)国际压力性损伤溃疡预防和治疗临床指南解读
- 三年级下册劳动《整 理书桌》课件
- GB/T 6426-1999铁电陶瓷材料电滞回线的准静态测试方法
- 广西版建筑装饰装修工程消耗量定额说明及计算规则
评论
0/150
提交评论