




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省黄山市屯溪区第二中学高二数学第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,则()A.9 B.11 C.13 D.152.下列函数中既是奇函数,又在区间上是单调递减的函数为()A. B. C. D.3.已知直线(t为参数)与圆相交于B、C两点,则的值为()A. B. C. D.4.已知,且,函数的图象的相邻两条对称轴之间的距离等于,则的值为()A. B. C. D.5.魏晋时期数学家刘徽在他的著作九章算术注中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:若正方体的棱长为2,则“牟合方盖”的体积为A.16 B. C. D.6.一个几何体的三视图如右图所示,则这个几何体的体积为()A. B. C. D.87.若函数在区间上是减函数,则实数的取值范围是()A. B. C. D.8.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度9.已知二项式的展开式中各项的二项式系数和为,其展开式中的常数项为,则()A. B. C. D.10.已知定义在上的偶函数在上单调递增,则函数的解析式不可能是()A. B. C. D.11.已知等差数列的前项和为,,,则()A.10 B.12 C.16 D.2012.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数fx=x⋅lnx,且0<x1<x2,给出下列命题:①fx1-f14.直线过抛物线的焦点且与交于、两点,则_______.15.已知不等式对任意恒成立,其中,是与无关的实数,则的最小值是________.16.设当x=θ时,函数f(x)=2sinx+cosx取得最小值,则cos()=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(且)的图象过点.(Ⅰ)求实数的值;(Ⅱ)若,对于恒成立,求实数的取值范围.18.(12分)已知集合,函数的定义域为,值域为.(1)若,求不同的函数的个数;(2)若,(ⅰ)求不同的函数的个数;(ⅱ)若满足,求不同的函数的个数.19.(12分)已知是定义在上的奇函数,且当时,.(Ⅰ)求的解析式;(Ⅱ)解不等式.20.(12分)在中,内角所对的边分别为,已知的面积为.(1)求和的值;(2)求的值.21.(12分)如图,正四棱柱的底面边长,若异面直线与所成角的大小为,求正四棱柱的体积.22.(10分)已知.猜想的表达式并用数学归纳法证明你的结论.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
根据自变量所在的范围代入相应的解析式计算即可得到答案.【题目详解】∵函数,∴=2+9=1.故选B.【题目点拨】本题考查函数值的求法,考查指对函数的运算性质,是基础题.2、B【解题分析】
由题意得,对于函数和函数都是非奇非偶函数,排除A、C.又函数在区间上单调递减,在区间单调递增,排除D,故选B.3、B【解题分析】
根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论.【题目详解】曲线(为参数),化为普通方程,将代入,可得,∴,故选B.【题目点拨】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题.4、B【解题分析】试题分析:根据函数的图象的相邻两条对称轴之间的距离等于,可得.由,且,可得,∴,则,故选B.考点:正弦函数的图象.5、C【解题分析】
由已知求出正方体内切球的体积,再由已知体积比求得“牟合方盖”的体积.【题目详解】正方体的棱长为2,则其内切球的半径,正方体的内切球的体积,又由已知,.故选C.【题目点拨】本题考查球的体积的求法,理解题意是关键,是基础题.6、C【解题分析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积.详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,所以该几何体的体积为,故选C.点睛:本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.7、D【解题分析】
根据复合函数的单调性,同增异减,则,在区间上是增函数,再根据定义域则在区间上恒成立求解.【题目详解】因为函数在区间上是减函数,所以,在区间上是增函数,且在区间上恒成立.所以且,解得.故选:D【题目点拨】本题主要考查复合函数的单调性,还考查了理解辨析和运算求解的能力,属于中档题.8、B【解题分析】
由三角函数的诱导公式可得,再结合三角函数图像的平移变换即可得解.【题目详解】解:由,即为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选:B.【题目点拨】本题考查了三角函数图像的平移变换及三角函数的诱导公式,属基础题.9、C【解题分析】
二项展开式的二项式系数和为,可得,使其通项公式为常数项时,求得,从而得到关于的方程.【题目详解】展开式中各项的二项式系数和为,,得,,当时,,解得:.【题目点拨】求二项式定理展开式中各项系数和是用赋值法,令字母都为1;而展开式各项的二项式系数和固定为.10、D【解题分析】
根据奇偶函数定义域关于原点对称求得的值.在根据单调性判断出正确选项.【题目详解】由于函数为偶函数,故其定义域关于原点对称,即,故函数的定义域为,且函数在上递增,故在上递减.对于A选项,,符合题意.对于B选项,符合题意.对于C选项,符合题意.对于D选项,,在上递减,不符合题意,故本小题选D.【题目点拨】本小题主要考查函数的奇偶性,考查函数的单调性,考查含有绝对值函数的理解,属于基础题.11、D【解题分析】
利用等差数列的前项和公式以及通项公式即可求出.【题目详解】,,,,故选:D【题目点拨】本题考查了等差数列的前项和公式以及通项公式,考查了学生的计算,属于较易题.12、A【解题分析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【题目点拨】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.二、填空题:本题共4小题,每小题5分,共20分。13、②③【解题分析】
根据每一个问题构造相应的函数,利用导数研究函数的单调性,进而判断命题正误.【题目详解】∵f当0<x<1e时,f'(x)<0,当x>1e时,f'(x)>0,①令g(x)=f(x)-x=xlnx-x,则g'(x)=ln∴g(x)在(1,+∞)单调递增,当x2>x∴f(x2)-②令g(x)=f(x)x=lnx∵0<x1<x2③当lnx>-1时,则x>1e,∴f(x)在(∴x1f(∴x④令h(x)=f(x)+x=xlnx+x,则∴x∈(0,1e2)时,h'设x1,x2∈(0,∴x【题目点拨】证明函数不等式问题,经常与函数性质中的单调性有关.解决问题的关键在于构造什么样函数?14、【解题分析】
本题先根据抛物线焦点坐标可得出值,再根据抛物线的定义和准线,可知,再分类讨论直线斜率存在和不存在两种情况,联立直线和抛物线方程,利用韦达定理最终求得结果.【题目详解】由题得,抛物线的焦点,所以,故.所以抛物线的方程为:.可设,由抛物线的定义可知:.当斜率不存在时,,所以:.当斜率存在时,设直线的斜率为,则直线方程为:.联立,整理得:,所以,所以.综合①②,可知.故答案为:1.【题目点拨】本题主要考查抛物线的标准方程,焦点坐标和准线,结合抛物线的定义,联立方程组,利用韦达定理化简求值,其中需要注意,当直线斜率未知时,需分类讨论斜率存在和不存在两种情况.15、1【解题分析】
设,其中,求出的取值范围,即可得出的最小值.【题目详解】设,其中;;,,,,即;令,,则的最小值是.故答案为:1.【题目点拨】本题考查不等式恒成立应用问题,可转化为求函数的最值,结合单调性是解题的关键.16、【解题分析】
利用辅助角公式化简函数的解析式,再根据正弦函数的最值求出辅助角,再利用两角和的余弦公式求出的值.【题目详解】对于函数f(x)=2sinx+cosx=sin(x+α),其中,cosα=,sinα=,α为锐角.当x=θ时,函数取得最小值,∴sin(θ+α)=-,即sin(θ+α)=-1,∴cos(θ+α)=1.故可令θ+α=-,即θ=--α,故故答案为.【题目点拨】本题主要考查辅助角公式,正弦函数的最值,两角和的余弦公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)2;(Ⅱ).【解题分析】分析:(1)根据图像过点求得参数值;(2)原不等式等价于,)恒成立,根据单调性求得最值即可.详解:(Ⅰ),,或,,(舍去),.(Ⅱ),,,,则,,.则.点睛:函数题目经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).18、(1)36;(2)(ⅰ)81;(ⅱ)19【解题分析】
(1)当定义域有4个元素,值域有3个元素,把4个元素分成2,1,1的三组,再对应值域里的3个元素,有;(2)(ⅰ)分值域有1个元素,2个元素,3个元素,讨论函数个数;(ⅱ)满足条件的有0,0,2,2或0,1,1,2或1,1,1,1三类,分三类求满足条件的函数个数.【题目详解】(1)函数的定义域是,值域是定义域里有2个数对着值域里面一个数,另外两个数是1对1,不同的函数的个数是个.(2)(ⅰ)值域不能为空集,当是单元素集合时,,,,定义域是,此时定义域里4个元素对应的都是值域里的一个数,此时有3个函数;当是双元素集合时,此时定义域里两个元素对应值域里一个元素,有个函数;当定义域里有3个元素对应值域里一个元素,定义域里第4个元素对应值域里一个元素时有个函数;当集合是三个元素时,如(1)有36个函数,一共有3+18+24+36=81个函数;(ⅱ)满足,的有0,0,2,2,函数个数是个,0,1,1,2时,函数个数是个,1,1,1,1时,函数个数是1个,共有个.【题目点拨】本题考查排列组合的应用,意在考查转化和推理,以及分类讨论和计算求解能力,属于中档题型.19、(Ⅰ);(Ⅱ).【解题分析】
(Ⅰ)当时,,因为是定义在上的奇函数,所以可得;,进而求出解析式.(Ⅱ)由(Ⅰ)可得出函数的单调性,利用单调性解不等式.【题目详解】(Ⅰ)当时,,因为是定义在上的奇函数所以;当时,;所以(Ⅱ)易知当时,单调递增,又是定义在上的奇函数,所以在上单调递增,所以不等式等价于,解得,所以原不等式的解集为.【题目点拨】本题考查函数的奇偶性与单调性,解题的关键是由奇偶性先求出解析式,属于一般题.20、(1),(2)【解题分析】
(1)由面积公式可得结合可求得解得再由余弦定理求得a=8.最后由正弦定理求sinC的值;(2)直接展开求值.【题目详解】(1)△ABC中,由得由,得又由解得由,可得a=8.由,得.(2),【题目点拨】本题主要考查三角变换及正弦定理、余弦定理等基础知识,考查基本运算求解能力.21、16【解题分析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三基三严模拟试题含答案
- 2025届吉林省长春十一中高三第二次诊断性检测英语试卷含答案
- 作业车司机高级工技能鉴定测试题及答案
- 2025届甘肃省武威市第一中高考英语全真模拟密押卷含答案
- 2025年四川省宜宾市第二中学校九年级二诊考试数学试题(原卷版+解析版)
- 河南省开封市五校2024-2025学年高二下学期4月期中地理试题(原卷版+解析版)
- 电视机制造业的生产计划与库存控制考核试卷
- 电子出版物的技术标准与兼容性考核试卷
- 稀土金属钎焊工艺考核试卷
- 纤维板成型技术考核试卷
- 检查结果互认制度培训
- 农业昆虫学-形考测试二-国开(ZJ)-参考资料
- 2024-2025年辽宁省面试真题
- 2024年高考真题河北卷化学试题(原卷版)
- 《建筑施工现场环境与卫生标准》JGJ146-2013
- 2024年浙江省中考科学试卷
- 2024年上海客运驾驶员从业资格证考试
- 小学劳动教育实施情况调查问卷(含教师卷和学生卷)及调查结论
- 2024年资格考试-良好农业规范认证检查员考试近5年真题集锦(频考类试题)带答案
- 麻疹经典课件
- 社区居家养老服务设计方案范文
评论
0/150
提交评论