2024届安徽省黄山市屯溪区屯溪第一中学高二数学第二学期期末质量检测模拟试题含解析_第1页
2024届安徽省黄山市屯溪区屯溪第一中学高二数学第二学期期末质量检测模拟试题含解析_第2页
2024届安徽省黄山市屯溪区屯溪第一中学高二数学第二学期期末质量检测模拟试题含解析_第3页
2024届安徽省黄山市屯溪区屯溪第一中学高二数学第二学期期末质量检测模拟试题含解析_第4页
2024届安徽省黄山市屯溪区屯溪第一中学高二数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省黄山市屯溪区屯溪第一中学高二数学第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数一定是指数函数的是()A. B. C. D.2.已知离散型随机变量的分布列如下,则()024A.1 B.2 C.3 D.43.化简的结果是()A. B. C. D.4.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a5.以下几个命题中:①线性回归直线方程恒过样本中心;②用相关指数可以刻画回归的效果,值越小说明模型的拟合效果越好;③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方.其中真命题的个数为()A.1个 B.2个 C.3个 D.4个6.从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是()A. B. C. D.7.曲线和直线所围成图形的面积是()A.4 B.6 C.8 D.108.中国古代数学著作《算法统宗》巾有这样一个问题:“三百七十八里关,初行健步不为难日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”其大意为:“有人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了A.60里 B.48里 C.36里 D.24里9.已知椭圆与双曲线有相同的焦点,点是两曲线的一个公共点,且,若椭圆离心率,则双曲线的离心率()A. B. C.3 D.410.双曲线x2A.23 B.2 C.3 D.11.若=(4,2,3)是直线l的方向向量,=(-1,3,0)是平面α的法向量,则直线l与平面α的位置关系是A.垂直 B.平行C.直线l在平面α内 D.相交但不垂直12.将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为()A.18B.24C.30D.36二、填空题:本题共4小题,每小题5分,共20分。13.已知复数的共轭复数是,且,则的虚部是__________.14.已知向量,则向量的单位向量______.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.16.下表为生产产品过程中产量(吨)与相应的生产耗能(吨)的几组相对应数据:根据上表提供的数据,得到关于的线性回归方程为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,分别为内角,,的对边,.(1)求;(2)若,的面积为,求的周长.18.(12分)已知椭圆:的离心率为,直线被圆截得的弦长为.(1)求椭圆的方程;(2)过点的直线交椭圆于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.19.(12分)已知椭圆E:的离心率为分别是它的左、右焦点,.(1)求椭圆E的方程;(2)过椭圆E的上顶点A作斜率为的两条直线AB,AC,两直线分别与椭圆交于B,C两点,当时,直线BC是否过定点?若是求出该定点,若不是请说明理由.20.(12分)某市一次全市高中男生身高统计调查数据显示:全市10万名男生的身高服从正态分布.现从某学校高中男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和190cm之间,将身高的测量结果按如下方式分成5组:第1组[160,166),第2组[166,172),...,第5组[184,190]下表是按上述分组方法得到的频率分布表:分组[160,166)[166,172)[172,178)[178,184)[184,190]人数31024103这50个数据的平均数和方差分别比10万个数据的平均数和方差多1和6.68,且这50个数据的方差为.(同组中的身高数据用该组区间的中点值作代表):(1)求,;(2)给出正态分布的数据:,.(i)若从这10万名学生中随机抽取1名,求该学生身高在(169,179)的概率;(ii)若从这10万名学生中随机抽取1万名,记为这1万名学生中身高在(169,184)的人数,求的数学期望.21.(12分)脐橙营养丰富,含有人体所必需的各类营养成份,若规定单个脐橙重量(单位:千克)在[0.1,0.3)的脐橙是“普通果”,重量在[0.3,0.5)的磨橙是“精品果”,重量在[0.5,0.7]的脐橙是“特级果”,有一果农今年种植脐橙,大获丰收为了了解脐橙的品质,随机摘取100个脐橙进行检测,其重量分别在[0.1,0.2),[0.2,0.3),[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7]中,经统计得到如图所示频率分布直方图(1)将频率视为概率,用样本估计总体.现有一名消费者从脐橙果园中,随机摘取5个脐橙,求恰有3个是“精品果”的概率.(2)现从摘取的100个脐橙中,采用分层抽样的方式从重量为[0.4,0.5),[0.5,0.6)的脐橙中随机抽取10个,再从这10个抽取3个,记随机变量X表示重量在[0.5,0.6)内的脐橙个数,求X的分布列及数学期望.22.(10分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据指数函数定义,逐项分析即可.【题目详解】A:中指数是,所以不是指数函数,故错误;B:是幂函数,故错误;C:中底数前系数是,所以不是指数函数,故错误;D:属于指数函数,故正确.故选D.【题目点拨】指数函数和指数型函数:形如(且)的是指数函数,形如(且且且)的是指数型函数.2、B【解题分析】

先计算,再根据公式计算得到【题目详解】故答案选B【题目点拨】本题考查了方差的计算,意在考查学生的计算能力.3、A【解题分析】

根据平面向量加法及数乘的几何意义,即可求解,得到答案.【题目详解】根据平面向量加法及数乘的几何意义,可得,故选A.【题目点拨】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解题分析】

令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,x【题目详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1⋅故选A.【题目点拨】解决函数零点问题,常常利用数形结合、等价转化等数学思想.5、C【解题分析】

由线性回归直线恒过样本中心可判断①,由相关指数的值的大小与拟合效果的关系可判断②,由随机误差和方差的关系可判断③,由相关指数和相关系数的关系可判断④.【题目详解】①线性回归直线方程恒过样本中心,所以正确.②用相关指数可以刻画回归的效果,值越大说明模型的拟合效果越好,所以错误.③随机误差是引起预报值和真实值之间存在误差的原因之一,其大小取决于随机误差的方差;所以正确.④在含有一个解释变量的线性模型中,相关指数等于相关系数的平方,所以正确.所以①③④正确.故选:C【题目点拨】本题考查线性回归直线方程和相关指数刻画回归效果、以及与相关系数的变形,属于基础题.6、C【解题分析】分析:根据古典概型计算恰好是2个白球1个红球的概率.详解:由题得恰好是2个白球1个红球的概率为.故答案为:C.点睛:(1)本题主要考查古典概型,意在考查学生对这些知识的掌握水平.(2)古典概型的解题步骤:①求出试验的总的基本事件数;②求出事件A所包含的基本事件数;③代公式=.7、C【解题分析】分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为2,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.详解:曲线和直线的交点坐标为(0,0),(2,2),(-2,-2),根据题意画出图形,曲线和直线所围成图形的面积是.故选C.点睛:该题所考查的是求曲线围成图形的面积问题,在解题的过程中,首先正确的将对应的图形表示出来,之后应用定积分求得结果,正确求解积分区间是解题的关键.8、C【解题分析】

每天行走的里程数是公比为的等比数列,且前和为,故可求出数列的通项后可得.【题目详解】设每天行走的里程数为,则是公比为的等比数列,所以,故(里),所以(里),选C.【题目点拨】本题为数学文化题,注意根据题设把实际问题合理地转化为数学模型,这类问题往往是基础题.9、B【解题分析】

设,,由椭圆和双曲线的定义,解方程可得,,再由余弦定理,可得,与的关系,结合离心率公式,可得,的关系,计算可得所求值.【题目详解】设,,为第一象限的交点,由椭圆和双曲线的定义可得,,解得,,在三角形中,,可得,即有,可得,即为,由,可得,故选.【题目点拨】本题考查椭圆和双曲线的定义和性质,主要是离心率,考查解三角形的余弦定理,考查化简整理的运算能力,属于中档题.10、A【解题分析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=23考点:双曲线与渐近线.11、D【解题分析】

判断直线的方向向量与平面的法向量的关系,从而得直线与平面的位置关系.【题目详解】显然与不平行,因此直线与平面不垂直,又,即与不垂直,从而直线与平面不平行,故直线与平面相交但不垂直.故选D.【题目点拨】本题考查用向量法判断直线与平面的位置关系,方法是由直线的方向向量与平面的法向量的关系判断,利用向量的共线定理和数量积运算判断直线的方向向量与平面的法向量是否平行和垂直,然后可得出直线与平面的位置关系.12、C【解题分析】解:由题意知4个小球有2个放在一个盒子里的种数是C4把这两个作为一个元素同另外两个元素在三个位置排列,有A3而红球和蓝球恰好放在同一个盒子里有A3∴编号为红球和蓝球不放到同一个盒子里的种数是C42二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设复数,代入等式得到答案.【题目详解】设复数故答案为【题目点拨】本题考查了复数的化简,共轭复数,复数的模,意在考查学生的计算能力和对复数知识的灵活运用.14、【解题分析】

计算出,从而可得出,即可求出向量的坐标.【题目详解】,,因此,向量的单位向量.故答案为:.【题目点拨】本题考查与非零向量同向的单位向量坐标的计算,熟悉结论“与非零向量同向的单位向量为”的应用是解题的关键,考查计算能力,属于基础题.15、【解题分析】

由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.16、【解题分析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a的值即可.详解:由题意可得:,,线性回归方程过样本中心点,则:,解得:.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)利用正弦定理把边转化为角,再由两角和的正弦可求出角;(2)利用三角形面积公式可得到,再由余弦定理可求出的周长;【题目详解】(1)由正弦定理知,∴,∴,.(或用余弦定理将换掉求解)(2)由(1)及已知可得,解得,由余弦定理知,∴,∴的周长为.【题目点拨】本题考查了正弦定理、余弦定理以及面积公式,考查了学生的计算能力,属于较易题.18、(1);(2),.【解题分析】

(1)由椭圆的离心率为,求得,再由圆的性质和圆的弦长公式,求得,进而可求解椭圆的标准方程;(2)设的方程:,联立方程组,利用根与系数的关系,求得,再利用向量的数量积的运算和代数式的性质,即可得到结论.【题目详解】(1)∵椭圆的离心率为,∴,∵圆的圆心到直线的距离为,∴直线被圆截得的弦长为.解得,故,∴椭圆的方程为.(2)设,,,当直线与轴不重合时,设的方程:.由得,,∴,,,当,即时,的值与无关,此时.当直线与轴重合且时,.∴存在点,使得为定值.【题目点拨】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.19、(1);(2)【解题分析】

(1)由题意,,结合的关系即可求解.(2)设直线,,,联立方程可得,又,结合韦达定理可得,化简计算即可求解.【题目详解】(1)因为,所以,又,所以,椭圆的方程为;(2)因为,所以直线斜率存在设直线,,消理得,(*)又理得即所以(*)代入得整理的得,所以直线定点【题目点拨】本题考查椭圆标准方程的求法,直线恒过定点问题,意在考查学生对这些基础知识的理解程度和掌握水平,属中档题.20、(1)=174;;(2)(i)0.6826;(ii)8185【解题分析】

(1)由每组的中间值乘以该组的人数,再求和,最后除以总人数,即可求出平均值,根据题意即可得到,再由,以及题中条件,即可得出;(2)(i)先由题意得(169,179)=(,),根据题中所给数据,即可求出对应概率;(ii)由题意可知(169,184)=(,),,先求出一名学生身高在(169,184)的概率,由题意可知服从二项分布,再由二项分布的期望,即可求出结果.【题目详解】解:(1)根据频率分布表中的数据可以得出这50个数据的平均数为所以,又=31.68,所以.(2)(i)由题意可知(169,179)=(,),所以该学生身高在(169,179)的概率为p=0.6826(ii)由题意可知(169,184)=(,),所以一名学生身高在(169,184)的概率为根据题意,所以的数学期望.【题目点拨】本题主要考查平均值与标准差的计算,正态分布特殊区间的概率,以及二项分布的期望问题,熟记公式即可,属于常考题型.21、(1)(2)见解析【解题分析】

(1)根据题意,先得到随机摘取一个脐橙,是“精品果”的概率为0.5,并且随机摘取5个脐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论