2024届安徽省泗县一中数学高二下期末质量检测模拟试题含解析_第1页
2024届安徽省泗县一中数学高二下期末质量检测模拟试题含解析_第2页
2024届安徽省泗县一中数学高二下期末质量检测模拟试题含解析_第3页
2024届安徽省泗县一中数学高二下期末质量检测模拟试题含解析_第4页
2024届安徽省泗县一中数学高二下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省泗县一中数学高二下期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图像是一条连续不断的曲线,若,,那么下列四个命题中①必存在,使得;②必存在,使得;③必存在,使得;④必存在,使得.真命题的个数是()A.个 B.个 C.个 D.个2.已知复数z=2+i,则A. B. C.3 D.53.在复平面内,复数对应向量(为坐标原点),设,以射线为始边,为终边逆时针旋转的角为,则,法国数学家棣莫弗发现棣莫弗定理:,,则,由棣莫弗定理导出了复数乘方公式:,则()A. B. C. D.4.已知函数的定义域为,集合,则()A. B. C. D.5.设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则常数a-b的值为()A.21 B.-21C.27 D.-276.已知函数的部分图象如图所示,其中N,P的坐标分别为,,则函数f(x)的单调递减区间不可能为()A. B. C. D.7.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.8.若函数的图像如下图所示,则函数的图像有可能是()A. B. C. D.9.复数的实部与虚部之差为()A.-1 B.1C. D.10.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:气温(℃)181310-1用电量(度)24343864由表中数据得到线性回归方程y=-2x+a,当气温为A.68度 B.52度 C.12度 D.28度11.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.12.函数在上取得最小值时,的值为().A.0 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.我国南北朝时期数学家祖瞘,提出了著名的祖暅原理:“幂势既同,则积不容异”,其中“幂”是截面积,“势”是几何体的高,该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围城一个封闭的区域,将区域沿轴的正方向平移个单位长度,得到几何体(图一),现有一个与之等高的圆柱(图二),其底面积与区域的面积相等,则此圆柱的体积为_______.图一图二14.在极坐标系中,已知到直线:,的距离为2,则实数的值为__________.15.从双曲线x2a2-y2b2=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为16.根据如图所示的伪代码,可知输出的结果S为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的众数、平均数.18.(12分)已知函数,M为不等式的解集.(1)求M;(2)证明:当,.19.(12分)平面直角坐标系xOy中,抛物线的焦点为F,过F的动直线l交于M、N两点.(1)若l垂直于x轴,且线段MN的长为1,求的方程;(2)若,求线段MN的中点P的轨迹方程;(3)求的取值范围.20.(12分)选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的方程为,直线的参数方程为(为参数).(1)将的方程化为直角坐标方程;(2)为上一动点,求到直线的距离的最大值和最小值.21.(12分)新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10人.(1)估计在男生中,选择全文的概率.(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;选择全文不选择全文合计男生5女生合计附:,其中.P()0.150.100.050.0250.0100.0050.001k2.0722.0763.8415.0246.6357.87910.82822.(10分)设命题幂函数在上单调递减。命题在上有解;若为假,为真,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:函数是连续的,故在闭区间上,的值域也是连续的,令,根据不等式的性质可得①正确;利用特值法可得②③④错误,从而可得结果.详解:函数是连续的,故在闭区间上,的值域也是连续的,令,对于①,,故①正确.对于②,若,则,无意义,故②错误.对于③,时,不存在,使得,故③错误.对于④,可能为,则无意义,故④错误,故选A.点睛:本题主要通过对多个命题真假的判断,主要综合考查函不等式的性质及连续函数的性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,利用定理、公理、结论以及特值判断,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.2、D【解题分析】

题先求得,然后根据复数的乘法运算法则即得.【题目详解】∵故选D.【题目点拨】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..3、D【解题分析】

将复数化为的形式,再利用棣莫弗定理解得答案.【题目详解】【题目点拨】本题考查复数的计算,意在考查学生的阅读能力,解决问题的能力和计算能力.4、D【解题分析】,解得,即,,所以,故选D.5、A【解题分析】

求出导数f′(x).利用x=-2与x=4是函数f(x)两个极值点即为f′(x)=0的两个根.即可求出a、b.【题目详解】由题意知,-2,4是函数f′(x)=0的两个根,f′(x)=3x2+2ax+b,所以⇒所以a-b=-3+24=21.故选A【题目点拨】f′(x)=0的解不一定为函数f(x)的极值点.(需判断此解两边导数值的符号)函数f(x)的极值点一定是f′(x)=0的解.6、D【解题分析】

利用排除法,根据周期选出正确答案.【题目详解】根据题意,设函数的周期为T,则,所以.因为在选项D中,区间长度为

∴在区间上不是单调减函数.所以选择D【题目点拨】本题考查了余弦函数的图象与性质的应用问题,解决此类问题需要结合单调性、周期等.属于中等题.7、C【解题分析】

由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【题目详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【题目点拨】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.8、A【解题分析】

根据函数图象的增减性与其导函数的正负之间的关系求解。【题目详解】由的图象可知:在,单调递减,所以当时,在,单调递增,所以当时,故选A.【题目点拨】本题考查函数图象的增减性与其导函数的正负之间的关系,属于基础题.9、B【解题分析】试题分析:,故选B.考点:复数的运算.10、A【解题分析】由表格可知x=10,y=40,根据回归直线方程必过(x,y)得a11、C【解题分析】

画出直观图,由球的表面积公式求解即可【题目详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【题目点拨】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.12、D【解题分析】

根据三角函数的单调性分析求解即可.【题目详解】当时,.根据正弦函数的性质可知,当,即时,取得最小值.故选:D【题目点拨】本题主要考查了三角函数的最值问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先利用定积分计算底面面积,再用体积公式得到答案.【题目详解】的图象与轴围城一个封闭的区域故答案为【题目点拨】本题考查了体积的计算,意在考查学生解决问题的能力.14、1【解题分析】分析:可化为,利用点到直线:,的距离为2,求出m的值.详解:可化为,点到直线:,的距离为2,,又,.故答案为:1.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.15、b-a【解题分析】试题分析:如图所示,设双曲线的右焦点为F1,连接PF1,OM,OT,则PF-PF1=2a,在RtΔFTO中,OF=c,OT=a,所以FT=OF2所以,所以MO=12PF1=考点:1.双曲线的定义;2.直线与圆相切;3.数形结合的应用.16、7【解题分析】第一次循环:;第二次循环:;第三次循环:;结束循环,输出考点:循环结构流程图三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、人;(2)人;15.70.【解题分析】试题分析:(1)利用频率分布直方图能估计学校1800名学生中,成绩属于第四组的人数.(2)利用频率分布直方图能求出该样本在这次百米测试中成绩良好的人数.(3)根据频率分布直方图,能求出样本数据的众数、中位数.解析:学校1800名学生中,成绩属于第四组的人数人;(2)样本在这次百米测试中成绩良好的人数是:人;由图可知众数落在第三组,是,.18、(1)(2)证明见解析【解题分析】

(1)用分类讨论法去掉绝对值符号,化为分段函数,再解不等式.(2)用分析法证明.【题目详解】(1),时,,无解,同样时,,无解,只有时,满足不等式,∴;(2)要证,只需证,即证,即证,因为,所以,则,原不等式成立.【题目点拨】本题考查解含绝对值的不等式,考查用分析法证明不等式.解含绝对值的不等式,一般都是按绝对值定义分类讨论去掉绝对值符号后再求解.19、(1)(2)(3)【解题分析】

(1)由题意,(,±)在抛物线上,代入可求出p,问题得一解决,(2)利用点差法和中点坐标公式和点斜式方程即可求出,(3)抛物线Γ:y2=2px(p>0),设l:xmy,M(x1,y1),y1>0,N(x2,y2),y2<0根据根系数的关系和两角和的正切公式,化简整理即可求出.【题目详解】解:(1)由题意,(,±)在抛物线上,代入可求出p,∴Γ的方程为y2=x,(2)抛物线Γ:y2=4x,设M(x1,y1),N(x2,y2),P(x0,y0)∴,∴(y1+y2)(y1﹣y2)=4(x1+x2),∴k,于是l为y﹣y0(x﹣x0),又l过点F(1,0),∴﹣y0(1﹣x0),即y02=2(x0﹣1),故线段MN的中点P的轨迹方程为y2=2(x﹣1)(3)抛物线Γ:y2=2px(p>0),设l:xmy,M(x1,y1),y1>0,N(x2,y2),y2<0,则y2﹣2my﹣p2=0,∴y1+y2=2mp,y1y2=﹣p2,则tan∠MON=tan(∠MOF+∠NOF),,,,,,故tan∠MON的取值范围是(﹣∞,]【题目点拨】本题考查抛物线与直线的位置关系的应用,考查转化思想以及计算能力,属于中档题.20、(1)(2)最大值是和最小值是.【解题分析】分析:(1)利用极坐标公式化成直角坐标方程.(2)先求出直线的直角坐标方程为,再利用圆心到直线的距离求到直线的距离的最大值是和最小值是.详解:(1)因为曲线的方程为,则,所以的直角坐标方程为,即.(2)因为直线的参数方程为(为参数),所以直线的直角坐标方程为,因为圆心到直线的距离,则直线与圆相离,所以所求到直线的距离的最大值是和最小值是.点睛:(1)本题主要考查极坐标、参数方程和直角坐标的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)解答第2问的关键是数形结合.21、(1);(2)列联表见解析,,理由见解析.【解题分析】

(1)利用古典概型概率公式求解即可;(2)由题先求得选择全文的有20人,不选全文的有30人,即可完成列联表,再代入公式求解,并与7.879比较即可.【题目详解】(1)由题中数据可知,男生总共25人,选择全文的5人,故选择全文的概率为(2)因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论