2024届河南省洛阳市名校高二数学第二学期期末统考模拟试题含解析_第1页
2024届河南省洛阳市名校高二数学第二学期期末统考模拟试题含解析_第2页
2024届河南省洛阳市名校高二数学第二学期期末统考模拟试题含解析_第3页
2024届河南省洛阳市名校高二数学第二学期期末统考模拟试题含解析_第4页
2024届河南省洛阳市名校高二数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省洛阳市名校高二数学第二学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设随机变量X服从正态分布,若,则=A.0.3 B.0.6 C.0.7 D.0.852.设随机变量服从正态分布,若,则实数等于()A. B. C. D.3.设实数x,y满足约束条件3x-2y+4≥0x+y-4≤0x-ay-2≤0,已知z=2x+y的最大值是7,最小值是A.6B.-6C.-1D.14.展开式中不含项的系数的和为A. B. C. D.25.有一项活动,在4名男生和3名女生中选2人参加,必须有男生参加的选法有()种.A.18 B.20 C.24 D.306.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.457.若函数=sinxcosx,x∈R,则函数的最小值为A. B. C. D.8.二项式展开式中的常数项为()A. B.C. D.9.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)10.设为两条直线,为两个平面,下列四个命题中,正确的命题是()A.若与所成的角相等,则B.若,,则C.若,则D.若,,则11.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.12.已知实数成等比数列,则椭圆的离心率为A. B.2 C.或2 D.或二、填空题:本题共4小题,每小题5分,共20分。13.若函数的定义域为,则实数的取值范围为.14.欧拉在1748年给出的著名公式(欧拉公式)是数学中最卓越的公式之一,其中,底数=2.71828…,根据欧拉公式,任何一个复数,都可以表示成的形式,我们把这种形式叫做复数的指数形式,若复数,则复数在复平面内对应的点在第________象限.15.在正四面体O-ABC中,,D为BC的中点,E为AD的中点,则=______________(用表示).16.从甲,乙,丙,丁4个人中随机选取两人,则甲、乙两人中有且只一个被选中的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,以为极点,轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的参数方程为(为参数),两曲线相交于,两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)若,求的值.18.(12分)已知函数,其中为常数且.(Ⅰ)若是函数的极值点,求的值;(Ⅱ)若函数有3个零点,求的取值范围.19.(12分)已知复数,且为纯虚数.(1)求复数;(2)若,求复数的模.20.(12分)已知的展开式中,前三项系数成等差数列.(1)求含项的系数;(2)将二项式的展开式中所项重新排成一列,求有理项互不相邻的概率.21.(12分)已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)22.(10分)从某小组的5名女生和4名男生中任选3人去参加一项公益活动.(1)求所选3人中恰有一名男生的概率;(2)求所选3人中男生人数ξ的分布列.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

先计算,再根据正态分布的对称性得到【题目详解】随机变量X服从正态分布故答案选A【题目点拨】本题考查了正态分布的概率计算,正确利用正态分布的对称性是解题的关键,属于常考题型.2、B【解题分析】分析:根据随机变量符合正态分布,又知正态曲线关于x=4对称,得到两个概率相等的区间关于x=4对称,得到关于a的方程,解方程即可.详解:∵随机变量ξ服从正态分布N(4,3),∵P(ξ<a﹣5)=P(ξ>a+1),∴x=a﹣5与x=a+1关于x=4对称,∴a﹣5+a+1=8,∴2a=12,∴a=6,故选:C.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.3、D【解题分析】试题分析:画出不等式组表示的区域如图,从图形中看出当不成立,故,当直线经过点时,取最大值,即,解之得,所以应选D.考点:线性规划的知识及逆向运用.【易错点晴】本题考查的是线性约束条件与数形结合的数学思想的求参数值的问题,解答时先构建平面直角坐标系,准确的画出满足题设条件3x-2y+4≥0x+y-4≤0x-ay-2≤0的平面区域,然后分类讨论参数的符号,进而移动直线,发现当该直线经过点时取得最大值,以此建立方程,通过解方程求出参数的值.4、B【解题分析】试题分析:由二项式定理知,展开式中最后一项含,其系数为1,令=1得,此二项展开式的各项系数和为=1,故不含项的系数和为1-1=0,故选B.考点:二项展开式各项系数和;二项展开式的通项5、A【解题分析】

分类:(1)人中有人是男生;(2)人都是男生.【题目详解】若人中有人是男生,则有种;若人都是男生,则有种;则共有种选法.【题目点拨】排列组合中,首先对于两个基本原理:分类加法、分步乘法,要能充分理解,它是后面解答排列组合综合问题的基础.6、A【解题分析】列方程组,解得.7、B【解题分析】∵函数,∴函数的最小值为故选B8、B【解题分析】

求出二项展开式的通项,使得的指数为,即可得出常数项.【题目详解】通项为常数项为故选:B【题目点拨】本题主要考查了利用二项式定理求常数项,属于基础题.9、C【解题分析】

求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【题目详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.【题目点拨】本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解题分析】

试题分析:A项中两直线还可能相交或异面,错误;B项中两直线还可能相交或异面,错误;C项两平面还可能是相交平面,错误;故选D.11、C【解题分析】

本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【题目详解】则.故选C.【题目点拨】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.12、A【解题分析】

由1,m,9构成一个等比数列,得到m=±1.当m=1时,圆锥曲线是椭圆;当m=﹣1时,圆锥曲线是双曲线,(舍)由此即可求出离心率.【题目详解】∵1,m,9构成一个等比数列,∴m2=1×9,则m=±1.当m=1时,圆锥曲线+y2=1是椭圆,它的离心率是=;当m=﹣1时,圆锥曲线+y2=1是双曲线,故舍去,则离心率为.故选A.【题目点拨】本题考查圆锥曲线的离心率的求法,解题时要注意等比数列的性质的合理运用,注意分类讨论思想的灵活运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:要使函数的定义域为,需满足恒成立.当时,显然成立;当时,即.综合以上两种情况得.考点:不等式恒成立问题.14、四【解题分析】

由欧拉公式求出,再由复数的乘除运算计算出,由此求出复数在复平面内对应的点在几象限.【题目详解】因为,所以,所以,则复数在复平面内对应的点在第四象限.【题目点拨】本题考查复数的基本计算以及复数的几何意义,属于简单题.15、【解题分析】因为在四面体中,为的中点,为的中点,,故答案为.16、2【解题分析】

利用列举法:从甲,乙,丙,丁4个人中随机选取两人,共有6种结果,其中甲乙两人中有且只一个被选取,共4种结果,由古典概型概率公式可得结果.【题目详解】从甲,乙,丙,丁4个人中随机选取两人,共有(甲乙),(甲丙),(甲丁),(乙丙),(乙丁),(丙丁),6种结果,其中甲乙两人中有且只一个被选取,有(甲丙),(甲丁),(乙丙),(乙丁),共4种结果,故甲、乙两人中有且只一个被选中的概率为46=2【题目点拨】本题主要考查古典概型概率公式的应用,属于基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式P=mn三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线的直角坐标方程为;直线的普通方程为.(2).【解题分析】

(1)利用可以把极坐标方程为直角坐标方程;对于参数方程,消去参数可得普通方程.(2)把直线的参数方程代入曲线的直角坐标方程,利用参数的几何意义可求解.【题目详解】(1)由,可得,则曲线的直角坐标方程为.由(为参数),消去,得直线的普通方程为.(2)把直线的参数方程代入,得到,设点,对应的参数分别为,则所以,则.【题目点拨】本题考查极坐标与参数方程的综合问题,考查极坐标方程与直角坐标方程、参数方程与普通方程的互化.18、(Ⅰ);(Ⅱ)【解题分析】

(I)由题意把代入导函数,导函数得0,即可求的值;(II)由题意等价转化为函数在区间上有三个零点问题,转化为求函数在定义域下求极值,列关于a的不等式求解.【题目详解】(Ⅰ)依题意得,所以,是函数的极值点,得f′(2)=0,解得或(舍去),故,(Ⅱ)函数有3个零点,即方程有三个不同实根,因为所以有三个不等实根,令,,,令,解得,在单调递增,单调递减,单调递增,所以为的极值点,根据函数有3个零点,需满足,解得,的取值范围为.【题目点拨】本题考查函数零点个数求参数的取值范围,通常利用转化思想将函数进行转化成等价函数或者方程根的问题,利用导数研究函数的性质,根据条件列出不等式求解,考查数学思想方法的灵活应用,属于较难题.19、(1)(2)【解题分析】

(1)将复数代入,令其实部为0,虚部不为0,可解得m,进而求出复数z;(2)先根据复数的除法法则计算w,再由公式计算w的模.【题目详解】解:(1)是纯虚数,且(2)..【题目点拨】本题考查复数的概念和模以及复数代数形式的乘除运算,属于基础题.20、(1)7;(2).【解题分析】

(1)利用二项式定理求出前三项的系数的表达式,利用这三个系数成等差数列并结合组合数公式求出的值,再利用二项式展开式通项可求出项的系数;(2)利用二项展开式通项求出展开式中有理项的项数为,总共是项,利用排列思想得出公共有种排法,然后利用插空法求出有理项不相邻的排法种数,最后利用古典概型概率公式可计算出所求事件的概率.【题目详解】(1)∵前三项系数、、成等差数列.,即.∴或(舍去)∴展开式中通项公式T,,,1.令,得,∴含x2项的系数为;(2)当为整数时,.∴展开式共有9项,共有种排法.其中有理项有3项,有理项互不相邻有种排法,∴有理项互不相邻的概率为【题目点拨】本题考查二项式定理指定项的系数,考查排列组合以及古典概型的概率计算,在处理排列组合的问题中,要根据问题类型选择合适的方法求解,同时注意合理使用分类计数原理和分步计数原理,考查逻辑推理与计算能力,属于中等题.21、(1)(2)当年产量为9千件时,该公司在这一品牌服装生产中获利最大【解题分析】试题分析:解:(I)当时,;当时,.∴年利润(万元)关于年产量(千件)的函数关系式为(Ⅱ)当时,由,即年利润在上单增,在上单减∴当时,取得最大值,且(万元).当时,,仅当时取“=”综上可知,当年产量为千件时,该公司在这一品牌服装的生产中所获年利润最大,最大值为万元.考点:本试题考查了函数模型在实际生活中的的运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论