




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建华安一中、长泰一中等四校2024届高二数学第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知高一(1)班有48名学生,班主任将学生随机编号为01,02,……,48,用系统抽样方法,从中抽8人,若05号被抽到了,则下列编号的学生被抽到的是()A.16B.22C.29D.332.若复数在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.3.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列,则的值为()A.8 B.10 C.12 D.164.若等比数列的各项均为正数,,,则()A. B. C.12 D.245.设集合,则下列结论正确的是()A. B. C. D.6.已知,则展开式中,项的系数为()A. B. C. D.7.若,则()A. B. C. D.8.已知A,B是半径为的⊙O上的两个点,·=1,⊙O所在平面上有一点C满足|+|=1,则||的最大值为()A.+1 B.+1 C.2+1 D.+19.下列说法错误的是()A.在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B.在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.在回归分析中,相关指数越大,模拟的效果越好10.在的展开式中,的幂指数是整数的共有A.3项 B.4项 C.5项 D.6项11.设是等差数列的前项和,已知,,则等于().A. B. C. D.12.复数在复平面上对应的点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知数列{2n-1·an}的前n项和Sn=9-6n,则数列{an}的通项公式是________.14.若对甲、乙、丙3组不同的数据作线性相关性检验,得到这3组数据的线性相关系数依次为0.83,0.72,-0.90,则线性相关程度最强的一组是_______.(填甲、乙、丙中的一个)15.如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为_____.16.已知函数在处切线方程为,若对恒成立,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙两位同学进入新华书店购买数学课外阅读书籍,经过筛选后,他们都对三种书籍有购买意向,已知甲同学购买书籍的概率分别为,乙同学购买书籍的概率分别为,假设甲、乙是否购买三种书籍相互独立.(1)求甲同学购买3种书籍的概率;(2)设甲、乙同学购买2种书籍的人数为,求的概率分布列和数学期望.18.(12分)设,,其中a,.Ⅰ求的极大值;Ⅱ设,,若对任意的,恒成立,求a的最大值;Ⅲ设,若对任意给定的,在区间上总存在s,,使成立,求b的取值范围.19.(12分)已知椭圆的离心率为,其中左焦点.(1)求出椭圆的方程;(2)若直线与曲线交于不同的两点,且线段的中点在曲线上,求的值.20.(12分)已知函数,其中均为实数,为自然对数的底数.(I)求函数的极值;(II)设,若对任意的,恒成立,求实数的最小值.21.(12分)已知数列满足,,数列的前项和为,且.(1)求数列、的通项公式;(2)设,求数列的前项和.22.(10分)已知函数,.(Ⅰ)当时,证明:;(Ⅱ)的图象与的图象是否存在公切线(公切线:同时与两条曲线相切的直线)?如果存在,有几条公切线,请证明你的结论.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据系统抽样的定义求出样本间隔即可.【题目详解】样本间隔为48÷18=6,则抽到的号码为5+6(k﹣1)=6k﹣1,当k=2时,号码为11,当k=3时,号码为17,当k=4时,号码为23,当k=5时,号码为29,故选:C.【题目点拨】本题主要考查系统抽样的定义和方法,属于简单题.2、A【解题分析】,所以,选A.3、C【解题分析】
数列,是等比数列,公比为2,前7项和为1016,由此可求得首项,得通项公式,从而得结论.【题目详解】最下层的“浮雕像”的数量为,依题有:公比,解得,则,,从而,故选C.【题目点拨】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.4、D【解题分析】
由,利用等比中项的性质,求出,利用等比数列的通项公式即可求出.【题目详解】解:数列是等比数列,各项均为正数,,所以,所以.所以,故选D.【题目点拨】本题考查了等比数列的通项公式,等比中项的性质,正确运算是解题的关键,属于基础题.5、B【解题分析】分析:先根据解分式不等式得集合N,再根据数轴判断集合M,N之间包含关系,以及根据交集定义求交集.详解:因为,所以,因此,,选B.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.6、B【解题分析】
==﹣1,则二项式的展开式的通项公式为Tr+1=﹣•,令9﹣2r=3,求得r=3,∴展开式中x3项的系数为﹣•=﹣,故选B【题目点拨】本题考查集合的混合运算.7、A【解题分析】
根据诱导公式和余弦的倍角公式,化简得,即可求解.【题目详解】由题意,可得,故选A.【题目点拨】本题主要考查了三角函数的化简求值问题,其中解答中合理配凑,以及准确利用诱导公式和余弦的倍角公式化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解题分析】
先由题意得到,根据向量的数量积求出,以O为原点建立平面直角坐标系,设A(,)得到点B坐标,再设C(x,y),根据点B的坐标,根据题中条件,即可求出结果.【题目详解】依题意,得:,因为,所以,=1,得:,以O为原点建立如下图所示的平面直角坐标系,设A(,),则B(,)或B(,)设C(x,y),当B(,)时,则=(+-x,+-y)由|+|=1,得:=1,即点C在1为半径的圆上,A(,)到圆心的距离为:=||的最大值为+1当B(,)时,结论一样.故选A【题目点拨】本题主要考查向量模的计算,熟记向量的几何意义,以及向量模的计算公式,即可求解,属于常考题型.9、C【解题分析】对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,正确;对于B,残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好,正确;对于C,线性回归方程对应的直线过样本中心点,不一定过样本数据中的点,故C错误;对于D,回归分析中,相关指数R2越大,其模拟的效果就越好,正确.故选C.10、D【解题分析】
根据题目,写出二次项展开式的通项公式,即可求出的幂指数是整数的项的个数。【题目详解】由题意知,要使的幂指数是整数,则必须是的倍数,故当满足条件。即的幂指数是整数的项共有项,故答案选D。【题目点拨】本题主要考查二项式定理的应用,解题关键是熟记二项展开式的公式。11、C【解题分析】试题分析:依题意有,解得,所以.考点:等差数列的基本概念.【易错点晴】本题主要考查等差数列的基本概念.在解有关等差数列的问题时可以考虑化归为和等基本量,通过建立方程(组)获得解.即等差数列的通项公式及前项和公式,共涉及五个量,知其中三个就能求另外两个,即知三求二,多利用方程组的思想,体现了用方程的思想解决问题,注意要弄准它们的值.运用方程的思想解等差数列是常见题型,解决此类问题需要抓住基本量、,掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.12、C【解题分析】
把复数化为形式,然后确定实部与虚部的取值范围.【题目详解】,时,,对应点在第二象限;时,,对应点在第四象限;时,,对应点在第一象限.或时,对应点在坐标轴上;∴不可能在第三象限.故选:C.【题目点拨】本题考查复数的除法运算,考查复数的几何意义.解题时把复数化为形式,就可以确定其对应点的坐标.二、填空题:本题共4小题,每小题5分,共20分。13、an=【解题分析】当n=1时,20·a1=S1=3,∴a1=3.当n≥2时,2n-1·an=Sn-Sn-1=-6.∴an=-.∴数列{an}的通项公式为an=.14、丙【解题分析】
根据两个变量y与x的回归模型中,相关系数|r|的绝对值越接近于1,其相关程度越强即可求解.【题目详解】两个变量y与x的回归模型中,它们的相关系数|r|越接近于1,这个模型的两个变量线性相关程度就越强,在甲、乙、丙中,所给的数值中﹣0.90的绝对值最接近1,所以丙的线性相关程度最强.故答案为丙.【题目点拨】本题考查了利用相关系数判断两个变量相关性强弱的应用问题,是基础题.15、【解题分析】
互为反函数的图象关于直线对称,所以两个阴影部分也关于直线对称.利用面积分割和定积分求出上部分阴影面积,再乘以2得到整个阴影面积.【题目详解】如图所示,连接,易得,,.【题目点拨】考查灵活运用函数图象的对称性和定积分求解几何概型,对逻辑思维能力要求较高.本题在求阴影部分面积时,只能先求上方部分,下方部分中学阶段无法直接求.16、【解题分析】
先求出切线方程,则可得到,令,从而转化为在R上恒为增函数,利用导函数研究单调性即可得到答案.【题目详解】根据题意得,故切线方程为,即,令,此时,由于对恒成立,转化为,则在R上恒为增函数,,此时,而,当时,,当时,,于是在处取得极小值,此时,而在R上恒为增函数等价于在R上恒成立,即即可,由于为极小值,则此时只能,故答案为2.【题目点拨】本题主要考查导函数的几何意义,利用导函数求函数极值,意在考查学生的分析能力,转化能力,计算能力,难度思维较大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,.【解题分析】
(1)这是相互独立事件,所以甲购买书籍的概率直接相乘即可.(2)基本事件为甲购买两本书和乙购买两本书的概率,所以先求出基本事件的概率,然后再求分布列.【题目详解】(1)记“甲同学购买3种书籍”为事件A,则.答:甲同学购买3种书籍的概率为.(2)设甲、乙同学购买2种书籍的概率分别为,.则,,所以,所以.,,.所以X的概率分布为X012P.答:所求数学期望为.【题目点拨】本题考查相互独立事件的概率,考查二项分布独立重复事件的概率的求法,解题的关键是找出基本事件的概率,属于中档题.18、(Ⅰ)1;(Ⅱ);(Ⅲ).【解题分析】
Ⅰ求出的导数,令导数大于0,得增区间,令导数小于0,得减区间,进而求得的极大值;Ⅱ当,时,求出的导数,以及的导数,判断单调性,去掉绝对值可得,构造函数,求得的导数,通过分离参数,求出右边的最小值,即可得到a的范围;Ⅲ求出的导数,通过单调区间可得函数在上的值域为,由题意分析时,结合的导数得到在区间上不单调,所以,,再由导数求得的最小值,即可得到所求范围.【题目详解】Ⅰ,当时,,在递增;当时,,在递减.则有的极大值为;Ⅱ当,时,,,在恒成立,在递增;由,在恒成立,在递增.设,原不等式等价为,即,,在递减,又,在恒成立,故在递增,,令,,∴,在递增,即有,即;Ⅲ,当时,,函数单调递增;当时,,函数单调递减.又因为,,,所以,函数在上的值域为.由题意,当取的每一个值时,在区间上存在,与该值对应.时,,,当时,,单调递减,不合题意,当时,时,,由题意,在区间上不单调,所以,,当时,,当时,0'/>所以,当时,,由题意,只需满足以下三个条件:,,使.,所以成立由,所以满足,所以当b满足即时,符合题意,故b的取值范围为.【题目点拨】本题考查导数的运用:求单调区间和极值,主要考查不等式恒成立和存在性问题,注意运用参数分离和构造函数通过导数判断单调性,求出最值,属于难题.19、(1)(2)或【解题分析】
(1)根据离心率和焦点坐标求出,从而得到椭圆方程;(2)将直线方程与椭圆方程联立,利用韦达定理表示出点横坐标,代入直线得到坐标;再将代入曲线方程,从而求得.【题目详解】(1)由题意得:,解得:,所以椭圆的方程为:(2)设点,,线段的中点为由,消去得由,解得:所以,因为点在曲线上所以解得:或【题目点拨】本题考查直线与椭圆的综合应用问题,关键是能够通过联立,将中点坐标利用韦达定理表示出来,从而利用点在曲线上构造方程,求得结果.20、(1)当时,取得极大值,无极小值;(2).【解题分析】试题分析:(1)由题对得,研究其单调性,可得当时,取得极大值,无极小值;(2)由题当时,,由单调性可得在区间上为增函数,根据,构造函数,由单调性可得在区间上为增函数,不妨设,则等价于,即,故又构造函数,可知在区间上为减函数,∴在区间上恒成立,即在区间上恒成立,∴,设则,∵,∴,则在区间上为减函数,∴在区间上的最大值,∴,试题解析:(1)由题得,,令,得.,列表如下:1大于00小于0极大值∴当时,取得极大值,无极小值;(2)当时,,∵在区间上恒成立,∴在区间上为增函数,设,∵在区间上恒成立,∴在区间上为增函数,不妨设,则等价于,即,设,则在区间上为减函数,∴在区间上恒成立,∴在区间上恒成立,∴,设,∵,∴,则在区间上为减函数,∴在区间上的最大值,∴,∴实数的最小值为.点睛:本题考查导数在研究函数性质时的综合应用,属难题.解题时要认真研究题意,进而构造新函数宾研究其性质以达到解决问题的目的21、(1);(2).【解题分析】试题分析:(1)由等差数列的定义和通项公式可得an;运用数列的递推式:当n=1时,b1=S1,当n≥2时,bn=Sn-Sn-1,即可得到{bn}的通项公式;
(2)由(1)知cn=,运用数列的求和方法:错位相减法,结合等比数列的求和公式,即可得到所求和.试题解析:(1)因为,,所以为首项是1,公差为2的等差数列,所以又当时,,所以,当时,…①…②由①-②得,即,所以是首项为1,公比为的等比数列,故.(2)由(1)知,则①②①-②得所以点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22、(Ⅰ)见解析(Ⅱ)曲线y=f(x),y=g(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理管理学习题库及答案
- 大学护理生物化学题库及答案
- 护理寄生虫题库及答案及解析
- 高速桥墩地基施工方案
- 智慧水利信息化平台创新创业项目商业计划书
- 林业生态补偿机制实施监督创新创业项目商业计划书
- 坚果与健康养生线上课程创新创业项目商业计划书
- 果蔬茶建筑材料应用创新创业项目商业计划书
- 2025年5G技术的网络安全挑战
- 电商直播平台技术升级与创新应用报告
- 《不忘初心》课件
- 2023年全国职业院校技能大赛-互联网+国际经济与贸易赛项规程
- 《乌鲁木齐市国土空间总体规划(2021-2035年)》
- 2024年物业经理(初级)职业鉴定考试题库(含答案)
- 儿科急危重症抢救预案及流程
- 新商品房购买合同示范文本1合集
- SY-T 5333-2023 钻井工程设计规范
- TSG-T7001-2023电梯监督检验和定期检验规则宣贯解读
- 中山红色文化
- JT-T-332-1997船用塑钢门窗-PDF解密
- 道德与法治三年级上册人教版教案全册
评论
0/150
提交评论