版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰市、呼和浩特市2024届数学高二第二学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“方程的曲线是椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件2.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种A.19 B.7 C.26 D.123.设a=log20.3,b=10lg0.3,c=100.3,则A.a<b<c B.b<c<a C.c<a<b D.c<b<a4.给出下列三个命题:①“若,则”为假命题;②若为假命题,则均为假命题;③命题,则,其中正确的个数是()A.0 B.1 C.2 D.35.若点在椭圆内,则被所平分的弦所在的直线方程是,通过类比的方法,可求得:被所平分的双曲线的弦所在的直线方程是()A. B.C. D.6.下列函数中,在定义域内单调的是()A. B.C. D.7.若向量,,则向量与()A.相交 B.垂直 C.平行 D.以上都不对8.若函数f(x)=x-2+A.-3≤a<32 B.-3≤a<1 C.a≥9.已知具有线性相关关系的变量、,设其样本点为,回归直线方程为,若,(为原点),则()A. B. C. D.10.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.311.已知,则()A.1 B. C. D.12.已知命题:①函数的值域是;②为了得到函数的图象,只需把函数图象上的所有点向右平移个单位长度;③当或时,幂函数的图象都是一条直线;④已知函数,若互不相等,且,则的取值范围是.其中正确的命题个数为()A.4 B.3 C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.设和是关于的方程的两个虚数根,若、、在复平面上对应的点构成直角三角形,那么实数_______________.14.命题“,”的否定为______.15.为计算,设计了下面的程序框图,则在空白框中应填入______.16.已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线为曲线.下列方程所表示的曲线中,是曲线的有__________(写出所有曲线的序号)①;②;③;④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式前三项中的系数成等差数列.(1)求的值和展开式系数的和;(2)求展开式中所有的有理项.18.(12分)设函数.(1)解不等式;(2)设,,使得成立,求实数m的取值范围.19.(12分)已知函数,.(1)若恒成立,试求实数的取值范围;(2)若函数的图像在点处的切线为直线,试求实数的值.20.(12分)如图,在四棱锥中,底面为菱形,,又底面,,为的中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.21.(12分)椭圆经过点,对称轴为坐标轴,且点为其右焦点,求椭圆的标准方程.22.(10分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到数据如表所示(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):常喝不常喝合计肥胖28不肥胖18合计30(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由.0.0500.0103.8416.635参考数据:附:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】方程的曲线是椭圆,故应该满足条件:故”是“方程的曲线是椭圆”的必要不充分条件.故答案为:B.2、C【解题分析】
由题意,根据甲丙丁的支付方式进行分类,根据分类计数原理即可求出.【题目详解】顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,
①当甲丙丁顾客都不选微信时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择支付宝时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有,故有2+5=7种,
②当甲丙丁顾客都不选支付宝时,则甲有2种选择,当甲选择现金时,其余2人种,
当甲选择微信时,丙丁可以都选银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有,故有2+5=7种,
③当甲丙丁顾客都不选银联卡时,若有人使用现金,则,若没有人使用现金,则有种,故有6+6=12种,根据分步计数原理可得共有7+7+6+6=26种,
故选C.【题目点拨】本题考查了分步计数原理和分类计数原理,考查了转化思想,属于难题.3、A【解题分析】
求出三个数值的范围,即可比较大小.【题目详解】,,,,,的大小关系是:.故选:A.【题目点拨】对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.4、B【解题分析】试题分析:“若,则”的逆否命题为“若,则”,为真命题;若为假命题,则至少有一为假命题;命题,则,所以正确的个数是1,选B.考点:命题真假【名师点睛】若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”——一真即真,“且”——一假即假,“非”——真假相反,做出判断即可.以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p∨q”“p∧q”“非p”形式命题的真假,列出含有参数的不等式(组)求解即可.5、A【解题分析】
通过类比的方法得到直线方程是,代入数据得到答案.【题目详解】所平分的弦所在的直线方程是,通过类比的方法,可求得双曲线的所平分的弦所在的直线方程是代入数据,得到:故答案选A【题目点拨】本题考查了类比推理,意在考查学生的推理能力.6、A【解题分析】
指数函数是单调递减,再判断其它选项错误,得到答案.【题目详解】A.,指数函数是单调递减函数,正确\B.反比例函数,在单调递减,在单调递减,但在上不单调,错误C.,在定义域内先减后增,错误D.,双勾函数,时先减后增,错误故答案选A【题目点拨】本题考查了函数的单调性,属于简单题.7、C【解题分析】
根据向量平行的坐标关系得解.【题目详解】,所以向量与平行.【题目点拨】本题考查向量平行的坐标表示,属于基础题.8、A【解题分析】
将问题转化为曲线gx=x-2+2x-1与直线y=ax没有交点,并将函数y=gx表示为分段函数的形式,并作出该函数的图象,分析直线【题目详解】因为函数f(x)=x-所以方程x-2即函数g(x)=x-2+如图所示,则h(x)的斜率a应满足-3≤a<32,故选:【题目点拨】本题考查绝对值函数的零点个数问题,解本题需注意:(1)零点个数问题转化为两个函数的公共点的个数问题;(2)含绝对值的函数一般利用零点分段法表示为分段函数。9、D【解题分析】
计算出样本中心点的坐标,将该点坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,将点的坐标代入回归直线方程得,解得,故选D.【题目点拨】本题考查利用回归直线方程求参数的值,解题时要熟悉“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.10、D【解题分析】D试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=1.故答案选D.考点:利用导数研究曲线上某点切线方程.11、C【解题分析】
由二项式定理可知,为正数,为负数,令代入已知式子即可求解.【题目详解】因为,由二项式定理可知,为正数,为负数,所以.故选:C【题目点拨】本题考查二项式定理求系数的绝对值和;考查运算求解能力;属于基础题.12、C【解题分析】
:①根据指数函数的单调性进行判断;②根据三角函数的图形关系进行判断;③根据幂函数的定义和性质进行判断;④根据函数与方程的关系,利用数形结合进行判断.【题目详解】①因为是增函数,所以当时,函数的值域是,故①正确;②函数图象上的所有点向右平移个单位长度,得到函数的图像,故②错误;③当时,直线挖去一个点,当时,幂函数的图形是一条直线,故③错误;④作出的图像如图所示:所以在上递减,在上递增,在上递减,又因为在上有两个,在上有一个,不妨设,则,即,则的范围即为的范围,由,得,则有,即的范围是,所以④正确;所以正确的命题有2个,故选C.【题目点拨】该题考查的是有关真命题的个数问题,在结题的过程中,涉及到的知识点有指数函数的单调性,函数图像的平移变换,零指数幂的条件以及数形结合思想的应用,灵活掌握基础知识是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意,可设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,b≠1.由根与系数的关系得到a,b的关系,由α,β,1对应点构成直角三角形,求得到实数m的值【题目详解】设α=a+bi,则由实系数一元二次方程虚根成对定理可得β=a﹣bi,且m与n为实数,n≠1.由根与系数的关系可得α+β=2a=﹣2,α•β=a2+b2=m.∴m>1.∴a=﹣1,m=b2+1,∵复平面上α,β,1对应点构成直角三角形,∴α,β在复平面对应的点分别为A,B,则OA⊥OB,所以b2=1,所以m=1+1=2;,故答案为:2【题目点拨】本题主要考查实系数一元二次方程虚根成对定理、根与系数的关系,三角形是直角三角形是解题的关键,属于基础题.14、,【解题分析】
直接利用全称命题的否定是特称命题写出结果即可.【题目详解】解:因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:,【题目点拨】本题考查命题的否定,特称命题与全称命题的关系,属于基础题.15、【解题分析】
根据框图作用分析即可求得空白处应该填入的语句.【题目详解】由程序框图的输出值,结合本框图的作用是计算,考虑,,所以空白处应该填入.故答案为:【题目点拨】此题考查程序框图的识别,根据已知程序框图需要输出的值填补框图,关键在于弄清框图的作用,准确分析得解.16、①③【解题分析】
将问题转化为:对于曲线上任意一点,在曲线上存在着点使得,据此逐项判断曲线是否为曲线.【题目详解】①的图象既关于轴对称,也关于轴对称,且图象是封闭图形,所以对于任意的点,存在着点使得,所以①满足;②的图象是双曲线,且双曲线的渐近线斜率为,所以渐近线将平面分为四个夹角为的区域,当在双曲线同一支上,此时,当不在双曲线同一支上,此时,所以,不满足,故②不满足;③的图象是焦点在轴上的抛物线,且关于轴对称,连接,再过点作的垂线,则垂线一定与抛物线交于点,所以,所以,所以③满足;④取,若,则有,显然不成立,所以此时不成立,所以④不满足.故答案为:①③.【题目点拨】本题考查曲线与方程的新定义问题,难度较难.(1)对于新定义的问题,首先要找到问题的本质:也就是本题所考查的主要知识点,然后再解决问题;(2)对于常见的,一定要能将其与向量的数量积为零即垂直关系联系在一起.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),,.【解题分析】
(1)展开式的通项公式为,则前3项的系数分别为1,,,成等差,即可列式求解.(2)由(1)知,则,对r赋值,即可求出所有的有理项.【题目详解】(1)根据题意,()n的展开式的通项为Tr+1=∁nr()n﹣r()r,其系数为∁nr,则前3项的系数分别为1,,,成等差,∴,解可得:或,又由,则,在中,令可得:.(2)由(1)的结论,,则的展开式的通项为,当时,有,当时,有,当时,有;则展开式中所有的有理项为.【题目点拨】本题主要考查二项式定理的应用,通项公式,求展开式中某项的系数,熟练掌握展开式的通项公式是解题的关键,属基础题.18、(1);(2)【解题分析】
(1)由绝对值不等式的解法可得解集;(2)由题意可得的最小值,运用绝对值不等式的性质可得的最小值,再由一元二次不等式的解法可得所求范围.【题目详解】(1),可得或,解得或,即解集为.(2),使得成立,即的最小值,由,当且仅当上式取得等号,可得,解得.【题目点拨】本题考查含有绝对值的不等式的解法,考查利用绝对值不等式解决能成立问题中的最值,难度一般.19、(1);(2)【解题分析】
(1)由恒成立,分离参数可得恒成立,设,对其求导,可得的最大值,可得的取值范围;(2)求出,对其求导,可得切在的切线方程,又切线方程为,可得与的方程组,可得,设,对其求导可得的单调性与最小值,可得的值唯一,可得答案.【题目详解】解:(1)由题意得:定义域为,恒成立.设,则,时,,函数单调递增,时,,函数单调递减,函数,所以.(2),.因为切点为,则切线方程为,整理得:,又切线方程为,所以,设,则,因为在单调递增,且,所以在单调递减,单调递增,所以,所以,所以的值唯一,为.【题目点拨】本题主要考查利用导数研究函数的单调性与极值及利用导数求切线等问题,关键是能够利用导数的几何意义确定曲线的切线方程,从而构造方程求得结果.综合性大,属于难题.20、(1)证明见解析.(2).【解题分析】分析:(1)根据菱形的性质以及线面垂直的性质可推导出,,从而得到,由此证明平面,从而得到;(2)分别以、、为,,轴,建立空间直角坐标系,利用向量垂直数量积为零列方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胃肠外科住院患者营养
- 自我介绍加试讲
- 脑动脉瘤健康宣教
- 人工流产术后关爱宣教
- 完全肠外营养支持
- 2025年湿法稀磷酸项目规划申请报告范文
- 肠胃炎症状辨析及护理指南
- 心律失常常见症状及护理守则
- 寄生虫感染宣教
- 农村农田分割协议书
- 污水池内壁防腐作业施工方案
- xx公司混凝土质量控制培训课件-完整版
- 传承三线精神、砥砺奋进前行课件
- 员工考证培训协议书
- 2025年郑州水务集团有限公司招聘80人模拟试卷带答案解析
- 2025吉林省吉林市磐石市总工会招聘工会社会工作者8人备考公基题库附答案解析
- hiv透析应急预案
- 11.交通信号控制技术与智能系统设计
- 八年级物理上学期第三次月考试卷(新教材沪科版)
- 2024年广东省春季高考(学考)语文真题(试题+解析)
- 支部纪检委员职责
评论
0/150
提交评论