




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省临沂市普通高中数学高二下期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为和,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140分以上的概率为()A. B. C. D.2.函数在上的最大值为()A. B. C. D.3.函数在点处的切线方程为()A. B. C. D.4.设A、B是非空集合,定义:且.已知,,则等于()A. B. C. D.5.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴德金提出了“戴德金分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集划分为两个非空的子集与,且满足,,中的每一个元素都小于中的每一个元素,则称为戴德金分割.试判断,对于任一戴德金分割,下列选项中不可能成立的是A.没有最大元素,有一个最小元素B.没有最大元素,也没有最小元素C.有一个最大元素,有一个最小元素D.有一个最大元素,没有最小元素6.—个物体的运动方程为其中的单位是米,的单位是秒,那么物体在5秒末的瞬时速度是()A.6米秒 B.7米秒 C.8米秒 D.9米秒7.已知是定义在上的奇函数,且满足,当时,,则在上,的解集是()A. B. C. D.8.函数的零点个数为()A.0 B.1 C.2 D.39.已知曲线在点处的切线方程为,则()A. B. C. D.10.若存在,使得不等式成立,则实数的最大值为()A. B. C. D.11.已知函数在区间上是单调递增函数,则的取值范围是()A. B. C. D.12.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则_________.14.湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm的空穴,则该球的半径为.15.已知定点和曲线上的动点,则线段的中点的轨迹方程为________16.已知函数且,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.18.(12分)某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸到2个红球,则打6折;若摸到1个红球,则打7折;若没摸到红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受6折优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算.19.(12分)2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.选择“物理”选择“地理”总计男生10女生25总计附参考公式及数据:,其中.0.050.013.8416.63520.(12分)在中,内角所对的边分别为,且.(1)求角的大小;(2)求的取值范围.21.(12分)英语老师要求学生从星期一到星期四每天学习3个英语单词:每周五对一周内所学单词随机抽取若干个进行检测(一周所学的单词每个被抽到的可能性相同)(1)英语老师随机抽了个单词进行检测,求至少有个是后两天学习过的单词的概率;(2)某学生对后两天所学过的单词每个能默写对的概率为,对前两天所学过的单词每个能默写对的概率为,若老师从后三天所学单词中各抽取一个进行检测,求该学生能默写对的单词的个数的分布列和期望.22.(10分)如图,在四棱锥中,底面为矩形,平面,为棱的中点,,,.(1)证明:平面.(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140分以上的概率为甲考140分以上乙未考到140分以上事件概率与乙考140分以上甲未考到140分以上事件概率的和,而甲考140分以上乙未考到140分以上事件概率为,乙考140分以上甲未考到140分以上事件概率为,因此,所求概率为,选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.2、A【解题分析】
对函数求导,利用导数分析函数的单调性,求出极值,再结合端点函数值得出函数的最大值.【题目详解】,,令,由于,得.当时,;当时,.因此,函数在处取得最小值,在或处取得最大值,,,因此,,故选A.【题目点拨】本题考查利用导数求解函数的最值,一般而言,利用导数求函数在闭区间上的最值的基本步骤如下:(1)求导,利用导数分析函数在闭区间上的单调性;(2)求出函数的极值;(3)将函数的极值与端点函数值比较大小,可得出函数的最大值和最小值.3、D【解题分析】分析:由题意,求得,得到,利用直线的点斜式方程,即可求解切线的方程;详解:由题意,函数,则,所以,即切线的斜率为,又,所以切线过点,所以切线的方程为,即,故选D.点睛:本题主要考查了利用导数的几何意义求解切线的方程问题,其中熟记导数的几何意义的应用是解答的关键,着重考查了推理与运算能力.4、A【解题分析】求出集合中的函数的定义域得到:,即可化为或解得,即,则故选5、C【解题分析】试题分析:设,显然集合M中没有最大元素,集合N中有一个最小元素,即选项A可能;,显然集合M中没有最大元素,集合N中也没有最小元素,即选项B可能;,显然集合M中有一个最大元素,集合N中没有最小元素,即选项D可能;同时,假设答案C可能,即集合M、N中存在两个相邻的有理数,显然这是不可能的,故选C.考点:以集合为背景的创新题型.【方法点睛】创新题型,应抓住问题的本质,即理解题中的新定义,脱去其“新的外衣”,转化为熟悉的知识点和题型上来.本题即为,有理数集的交集和并集问题,只是考查两个子集中元素的最值问题,即集合M、N中有无最大元素和最小元素.6、D【解题分析】分析:求出运动方程的导数,据对位移求导即得到物体的瞬时速度,求出导函数在t=3时的值,即为物体在3秒末的瞬时速度详解:∵物体的运动方程为s=1﹣t+t2s′=﹣1+2ts′|t=5=9.故答案为:D.点睛:求物体的瞬时速度,只要对位移求导数即可.7、C【解题分析】
首先结合函数的对称性和函数的奇偶性绘制函数图像,原问题等价于求解函数位于直线下方点的横坐标,数形结合确定不等式的解集即可.【题目详解】函数满足,则函数关于直线对称,结合函数为奇函数绘制函数的图像如图所示:的解集即函数位于直线下方点的横坐标,当时,由可得,结合可得函数与函数交点的横坐标为,据此可得:的解集是.本题选择C选项.【题目点拨】本题主要考查函数的奇偶性,函数的对称性等知识,意在考查学生的转化能力和计算求解能力.8、C【解题分析】,如图,由图可知,两个图象有2个交点,所以原函数的零点个数为2个,故选C.9、D【解题分析】
通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得.【题目详解】详解:,将代入得,故选D.【题目点拨】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系.10、A【解题分析】设,则当时,,单调递减当时,,单调递增存在,成立,,故选点睛:本题利用导数求解不等式问题,在解答此类问题时的方法可以分离参量,转化为最值问题,借助导数,求出新函数的单调性,从而求出函数的最值,解出参量的取值范围,本题较为基础.11、C【解题分析】
对函数求导,将问题转化为恒成立,构造函数,将问题转化为来求解,即可求出实数的取值范围.【题目详解】,,令,则.,其中,且函数单调递增.①当时,对任意的,,此时函数在上单调递增,则,合乎题意;②当时,令,得,.当时,;当时,.此时,函数在处取得最小值,则,不合乎题意.综上所述,实数的取值范围是.故选:C.【题目点拨】本题考查利用函数的在区间上的单调性求参数的取值范围,解题时根据函数的单调性转化为导数的符号来处理,然后利用参变量分离法或分类讨论思想转化函数的最值求解,属于常考题,属于中等题。12、B【解题分析】
利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【题目详解】,因为为锐角三角形,所以,,,故,选B.【题目点拨】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据二项式定理,,推导出,由,能求出.【题目详解】解:,,,由,解.故答案为1.【题目点拨】本题考查实数值的求法,考查组合数公式等基础知识,考查推理能力与计算能力,考查函数与方程思想,是基础题.14、13cm【解题分析】
设球半径为R,则,解得,故答案为13.15、【解题分析】
通过中点坐标公式,把点的坐标转移到上,把点的坐标代入曲线方程,整理可得点的轨迹方程。【题目详解】设点的坐标为,点,因为点是线段的中点,所以解得,把点的坐标代入曲线方程可得,整理得,所以点的轨迹方程为故答案为:【题目点拨】本题考查中点坐标公式,相关点法求轨迹方程的方法,属于中档题。16、【解题分析】
分别令和代入函数解析式,对比后求得的值.【题目详解】依题意①,②,由①得,代入②得.故填-2【题目点拨】本小题主要考查函数求值,考查对数运算,考查分子有理化,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】试题分析:(1)由四点共圆性质可得∠D=∠CBE.再结合条件∠CBE=∠E,得证(2)由等腰三角形性质得OM⊥AD,即得AD∥BC,因此∠A=∠CBE=∠E.而∠D=∠E,所以△ADE为等边三角形.试题解析:解:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连结MN,则由MB=MC知MN⊥BC,故O在直线MN上.又AD不是☉O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD.所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.18、(1)(2)该顾客选择第一种抽奖方案更合算,详见解析【解题分析】
(1)选择方案一,利用积事件的概率公式计算出两位顾客均享受到免单的概率值;(2)选择方案一,计算出付款金额的分布列和数学期望值,选择方案二,计算出付款金额数学期望值,比较大小可得出结论.【题目详解】(1)选择方案一:若享受到6折优惠,则需要摸出2个红球,设顾客享受到6折优惠为事件A,则,所以两位顾客均享受到6折优惠的概率为;(2)若选择方案一,设付款金额为元,则可能的取值为0,600,700,1000,,,故的分布列为06007001000所以(元);若选择方案二,设摸到红球的个数为,付款金额为元,则,由已知可得,故,,所以(元),因为,所以该顾客选择第一种抽奖方案更合算.【题目点拨】本题考查独立事件的概率乘法公式,考查随机变量分布列与数学期望,在列随机变量的分布列时,要弄清变量所满足的分布列类型,结合相关概率公式进行计算,考查计算能力,属于中等题.19、(1)列联表见解析;有的把握认为选择科目与性别有关.(2)分布列见解析;【解题分析】
(1)根据分层抽样,求得抽到男生、女生的人数,得到的列联表,求得的值,即可得到结论;(2)求得这4名女生中选择地理的人数可为,求得相应的概率,得到分布列,利用期望的公式计算,即可求解.【题目详解】(1)由题意,抽取到男生人数为,女生人数为,所以列联表为:选择“物理”选择“地理”总计男生451055女生252045总计7030100所以,所以有的把握认为选择科目与性别有关.(2)从45名女生中分层抽样抽9名女生,所以这9名女生中有5人选择物理,4人选择地理,9名女生中再选择4名女生,则这4名女生中选择地理的人数可为.设事件发生概率为,则,,,,.所以的分布列为:01234期望.【题目点拨】本题主要考查了独立性检验及其应用,以及离散型随机变量的分布列与期望的计算,其中解答中认真审题,得出随机变量的取值,求得相应的概率,得出分布列,利用公式准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.20、(1)(2)【解题分析】
(1)由已知边的关系配凑出余弦定理的形式,求得,根据的范围求得结果;(2)利用两角和差正弦公式和辅助角公式将整理为,由可求得的范围,进而结合正弦函数的图象可求得的值域,从而得到所求范围.【题目详解】(1)由得:,即:(2)的取值范围为:【题目点拨】本题考查余弦定理解三角形、三角形中取值范围类问题的求解,关键是能利用两角和差公式和辅助角公式将所求式子转变为的形式,利用正弦型函数值域的求解方法求得结果.21、(1);(2).【解题分析】
(I)根据古典概型概率公式求解,(Ⅱ)先确定随机变量,再分别求对应概率,列表得分布列,最后根据数学期望公式得结果.【题目详解】(Ⅰ)设英语老师抽到的4个单词中,至少含有个后两天学过的事件为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级体育下册 旭日东升说课稿
- 家畜人工授精员5S管理考核试卷及答案
- 6.1 化学反应与电能 教学设计 2023-2024学年高一下学期人教版(2019)化学必修第二册
- 钻井平台水手技能操作考核试卷及答案
- 交互式学习环境设计-洞察及研究
- 2025年播种机行业研究报告及未来行业发展趋势预测
- 多任务标记迁移-洞察及研究
- 儿童友好娱乐设计-洞察及研究
- 复合材料在极端环境下的性能稳定性研究-洞察及研究
- 第四单元音乐中的动物 欣赏 龟兔赛跑(教案)-2023-2024学年人教版(2012)音乐二年级上册
- 中职乐理课教学课件
- 中小会计师所发展困境及对策
- 支气管哮喘急性发作课件
- 2025-2026学年人教鄂教版(2017)小学科学六年级上册教学计划及进度表
- 心理委员基本知识培训课件
- 盆底肌电重塑机制-洞察及研究
- 2025年工会基础知识考试题库(含答案)
- 监督协议书模板
- 男性不育遗传因素检测
- 外科护理学:腹股沟疝气
- 人教版四年级数学上册学生评价计划
评论
0/150
提交评论