




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西藏自治区拉萨市拉萨那曲第二高级中学数学高二第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.2.已知函数f(x)在R上可导,且f(x)=x2A.f(x)=x2C.f(x)=x23.同学聚会时,某宿舍的4位同学和班主任老师排队合影留念,其中宿舍长必须和班主任相邻,则5人不同的排法种数为()A.48 B.56 C.60 D.1204.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A.5种 B.4种 C.9种 D.20种5.已知向量,,若,则()A.-1 B.1 C.-2或1 D.-2或-16.的展开式中含项的系数为()A.-160 B.-120 C.40 D.2007.已知复数满足(为虚数单位),则共轭复数等于()A. B. C. D.8.设集合,,,则集合中元素的个数为()A. B. C. D.9.在下列区间中,函数的零点所在的区间为()A. B. C. D.10.已知是抛物线上一点,则到抛物线焦点的距离是()A.2 B.3 C.4 D.611.已知函数,当取得极值时,x的值为()A. B. C. D.12.设函数,若,则实数a的值为()A. B. C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是_________.14.,则使成立的值是____________.15.已双曲线过点,其渐近线方程为,则双曲线的焦距是_________;16.已知非零向量满足,且,则与的夹角为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业响应省政府号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表是设备改造后的样本的频数分布表.表:设备改造后样本的频数分布表质量指标值频数(1)完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;设备改造前设备改造后合计合格品不合格品合计(2)根据频率分布直方图和表提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)企业将不合格品全部销毁后,根据客户需求对合格品进行登记细分,质量指标值落在内的定为一等品,每件售价元;质量指标值落在或内的定为二等品,每件售价元;其它的合格品定为三等品,每件售价元.根据表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.附:18.(12分)已知直线,(为参数),,(为参数),(1)若,求的值;(2)在(l)的条件下,圆(为参数)的圆心到直线的距离.19.(12分)函数.(1)当时,求不等式的解集;(2)若不等式的解集为空集,求的取值范围.20.(12分)(本小题满分13分)已知函数。(Ⅰ)当时,求曲线在处切线的斜率;(Ⅱ)求的单调区间;(Ⅲ)当时,求在区间上的最小值。21.(12分)(1)证明不等式:,;(2)已知,;;p是q的必要不充分条件,求的取值范围.22.(10分)已知实数为整数,函数,(1)求函数的单调区间;(2)如果存在,使得成立,试判断整数是否有最小值,若有,求出值;若无,请说明理由(注:为自然对数的底数).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.2、A【解题分析】
先对函数f(x)求导,然后将x=1代入导函数中,可求出f'(1)=-2,从而得到f(x)【题目详解】由题意,f'(x)=2x+2f'(1),则f故答案为A.【题目点拨】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.3、A【解题分析】
采用捆绑法,然后全排列【题目详解】宿舍长必须和班主任相邻则有种可能,然后运用捆绑法,将其看成一个整体,然后全排列,故一共有种不同的排法故选【题目点拨】本题考查了排列中的位置问题,运用捆绑法来解答即可,较为基础4、C【解题分析】
分成两类方法相加.【题目详解】会用第一种方法的有5个人,选1个人完成这项工作有5种选择;会用第二种方法的有4个人,选1个人完成这项工作有4种选择;两者相加一共有9种选择,故选C.【题目点拨】本题考查分类加法计数原理.5、C【解题分析】
根据题意得到的坐标,由可得的值.【题目详解】由题,,,或,故选C【题目点拨】本题考查利用坐标法求向量差及根据向量垂直的数量积关系求参数6、B【解题分析】分析:将化为含由展开式中的,常数项与中展开式中的常数项,分别对应相乘得到.分别求出相应的系数,对应相乘再相加即可.详解:将化为含由展开式中的,常数项与中展开式中的常数项,分别对应相乘得到.展开式的通项为,常数项的系数分别为展开式的通项为常数项,的系数分别为故的展开式中含项的系数为故选B.点睛:本题考查了二项式定理的应用问题,也考查了利用展开式的通项公式求指定项的系数,是基础题目.7、D【解题分析】试题分析:由题意得考点:复数运算8、A【解题分析】
由题意可得出:从,,任选一个;或者从,任选一个;结合题中条件,确定对应的选法,即可得出结果.【题目详解】解:根据条件得:从,,任选一个,从而,,任选一个,有种选法;或时,,有两种选法;共种选法;C中元素有个.故选A.【题目点拨】本题主要考查列举法求集合中元素个数,熟记概念即可,属于基础题型.9、C【解题分析】
先判断函数在上单调递增,由,利用零点存在定理可得结果.【题目详解】因为函数在上连续单调递增,且,所以函数的零点在区间内,故选C.【题目点拨】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.10、B【解题分析】分析:直接利用抛物线的定义可得:点到抛物线焦点的距离.详解:由抛物线方程可得抛物线中,则利用抛物线的定义可得点到抛物线焦点的距离.故选B.点睛:本题考查了抛物线的定义标准方程及其性质,考查了推理能力与计算能力,属于基础题.11、B【解题分析】
先求导,令其等于0,再考虑在两侧有无单调性的改变即可【题目详解】解:,,的单调递增区间为和,减区间为,在两侧符号一致,故没有单调性的改变,舍去,故选:B.【题目点拨】本题主要考查函数在某点取得极值的性质:若函数在取得极值.反之结论不成立,即函数有,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.12、B【解题分析】分析:根据分段函数分成两个方程组求解,最后求两者并集.详解:因为,所以所以选B.点睛:求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.二、填空题:本题共4小题,每小题5分,共20分。13、乙【解题分析】分析:由题意分别求解数学期望即可确定获胜希望大的狙击手.详解:由题意,狙击手甲得分的数学期望为,狙击手乙得分的数学期望为,由于乙的数学期望大于甲的数学期望,故两名狙击手获胜希望大的是乙.点睛:本题主要考查离散型随机变量数学期望的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.14、-4或2【解题分析】
当0时,;当时,.由此求出使成立的值.【题目详解】,当0时,解得当时,,解得故答案为-4或2.【题目点拨】本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.15、【解题分析】
由渐近线方程设出双曲线方程为,代入已知点的坐标求出,化双曲线方程为标准方程后可得,从而求得。【题目详解】由题意设双曲线方程为,又双曲线过点,∴,∴双曲线方程为,即,,,∴焦距为。故答案为:。【题目点拨】本题考查双曲线的焦距,求双曲线的标准方程。已知双曲线的渐近线方程为,则可设双曲线方程为,代入已知条件求得,即得双曲线方程。而不需考虑焦点所在的轴。16、【解题分析】
通过,可得,化简整理可求出,从而得到答案.【题目详解】根据题意,可得,即,代入,得到,于是与的夹角为.【题目点拨】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析;有的把握认为该企业生产的这种产品的质量指标值与设备改造有关.(2)设备改造后性能更优.(3)分布列见解析;.【解题分析】分析:(1)根据设备改造前的样本的频率分布直方图和设备改造后的样本的频数分布表完成列联表,求出,与临界值比较即可得结果;(2)根据频率分布直方图和频数分布表,可得到设备改造前产品为合格品的概率和设备改造后产品为合格品的概率,从而可得结果;(3)随机变量的取值为:,利用古典概型概率公式,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)根据设备改造前的样本的频率分布直方图和设备改造后的样本的频数分布表.完成下面的列联表:设备改造前设备改造后合计合格品不合格品合计将列联表中的数据代入公式计算得:∵,∴有的把握认为该企业生产的这种产品的质量指标值与设备改造有关.(2)根据设备改造前的样本的频率分布直方图和设备改造后的样本的频数分布表.可知,设备改造前产品为合格品的概率约为设备改造后产品为合格品的概率约为设备改造后产品合格率更高,因此,设备改造后性能更优.(3)由表1知:一等品的频率为,即从所有产品中随机抽到一件一等品的概率为;二等品的频率为,即从所有产品中随机抽到一件二等品的概率为;三等品的频率为,即从所有产品中随机抽到一件三等品的概率为.由已知得:随机变量的取值为:.∴随机变量的分布列为:∴.点睛:本题主要考查直方图的应用、离散型随机变量的分布列与期望,以及独立性检验的应用,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.18、(1)-1;(2)【解题分析】
(1)将两条直线的参数方程化为普通方程后,利用两条直线垂直的条件列式可解得.(2)将参数方程化为普通方程后,得圆心坐标,再由点到直线的距离公式可得.【题目详解】(1)由消去参数得,由消去参数得,因为,所以,解得.(2)由(1)得直线,由消去参数得,其圆心为,由点到直线的距离公式得圆心到直线的距离为:.【题目点拨】本题考查了参数方程化普通方程,两条直线垂直的条件,点到直线的距离公式,属于基础题.19、(1)(2)【解题分析】
(1)由得,分,,三种情况讨论,即可得出结果;(2)先由的解集为空集,得恒成立,再由绝对值不等式的性质求出的最大值,即可得出结果.【题目详解】解:(1)当时,不等式,即,当时,原不等式可化为,即,显然不成立,此时原不等式无解;当时,原不等式可化为,解得;当时,原不等式可化为,即,显然成立,即满足题意;综上,原不等式的解集为;(2)由的解集为空集,得的解集为空集,所以恒成立,因为,所以,所以当且仅当,即时,,所以,解得,即的取值范围是.【题目点拨】本题主要考查含绝对值不等式,熟记分类讨论的方法以及含绝对值不等式的性质即可,属于常考题型.20、(Ⅰ)(Ⅱ)当时,的单调递减区间为;当时,函数的单调递减区间为,单调递增区间为(Ⅲ)当时,在区间上的最小值为,当,在区间上的最小值为【解题分析】试题分析:(Ⅰ)利用导数几何意义求切线斜率:当时,,故曲线在处切线的斜率为(Ⅱ)因为,所以按分类讨论:当时,,递减区间为;当时,在区间上,,在区间上,,单调递减区间为,单调递增区间为;(Ⅲ)根据(Ⅱ)得到的结论,当,即时,在区间上的最小值为,;当,即时,在区间上的最小值为,试题解析:解:(Ⅰ)当时,,2分故曲线在处切线的斜率为3分(Ⅱ)。4分①当时,由于,故。所以,的单调递减区间为。5分②当时,由,得。在区间上,,在区间上,。所以,函数的单调递减区间为,单调递增区间为。7分综上,当时,的单调递减区间为;当时,函数的单调递减区间为,单调递增区间为。8分(Ⅲ)根据(Ⅱ)得到的结论,当,即时,在区间上的最小值为,。10分当,即时,在区间上的最小值为,。12分综上,当时,在区间上的最小值为,当,在区间上的最小值为。13分考点:利用导数求切线斜率,利用导数求单调区间,利用导数求函数最值21、(1)见证明;(2).【解题分析】
(1)构造函数,将问题转化为,然后利用导数求出函数的最小值即可得证;(2)解出命题中的不等式,由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 传染手术处理
- 湖北卷2024年高考化学真题
- 无人机应急响应程序试题及答案
- 《药剂的质量检验》课件
- 活动策划案及执行指南
- 五年级下册品德与社会第八课:公共生活中的文明素养
- 《运动专项频率》教学课件
- 政治新质生产力解读
- 《优化护理团队建设》课件
- 《华夏科技公司案例分析》课件
- 天车司机考试试题及答案
- 国际学校综合课程教研组计划
- 学校低值易耗品采购与管理流程
- 2024年中国心力衰竭诊断与治疗指南更新要点解读
- 从财务视角看央企“一利五率”体系及实现路径
- 学大讲义六年级下册数学(含答案)第一讲 百分数(二)及百分数的复习
- 广东省佛山市南海区2025年中考历史模拟试题(含答案)
- 2025年中国血型试剂行业竞争格局及市场发展潜力预测报告
- 中山大学自主招生个人陈述自荐信范文
- 塔吊培训资料课件
- T-ZAWS 004-2024 金属非金属露天矿山安全现状评价报告编制导则
评论
0/150
提交评论