




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵东三中2024届数学高二第二学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.区间[0,5]上任意取一个实数x,则满足x[0,1]的概率为A. B. C. D.2.过抛物线y2=4x焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|=2|AF|,则|BF|等于()A.2 B.3 C.4 D.53.下列求导计算正确的是()A. B. C. D.4.定义在(0,+∞)上的函数f(x)的导数满足x2<1,则下列不等式中一定成立的是()A.f()+1<f()<f()﹣1 B.f()+1<f()<f()﹣1C.f()﹣1<f()<f()+1 D.f()﹣1<f()<f()+15.若关于x的不等式对任意的恒成立,则可以是()A., B.,C., D.,6.己知变量x,y的取值如下表:x3456y2.5344.5由散点图分析可知y与x线性相关,且求得回归方程为,据此预测:当时,y的值约为A.5.95 B.6.65 C.7.35 D.77.若集合,,则有()A. B. C. D.8.地球半径为R,北纬45°圈上A,B两点分别在东径130°和西径140°,并且北纬45°圈小圆的圆心为O´,则在四面体O-ABO´中,直角三角形有()A.0个 B.2个 C.3个 D.4个9.复数是虚数单位的虚部是A. B.1 C. D.i10.已知抛物线和直线,过点且与直线垂直的直线交抛物线于两点,若点关于直线对称,则()A.1 B.2 C.4 D.611.设,若,则实数是()A.1 B.-1 C. D.012.已知,则为()A.2 B.3 C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知是等腰直角三角形,斜边,是平面外的一点,且满足,,则三棱锥外接球的表面积为________.14.若指数函数的图象过点,则__________.15.若,则的最小值为________.16.设等差数列的前项和为,则成等差数列.类比以上结论有:设等比数列的前项积为,则,__________,成等比数列.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求函数的单调区间;(2)讨论函数的零点个数.18.(12分)已知函数,数列的前项和为,且满足.(1)求的值;(2)猜想数列的通项公式,并用数学归纳法加以证明.19.(12分)(本小题满分12分)已知,函数.(I)当为何值时,取得最大值?证明你的结论;(II)设在上是单调函数,求的取值范围;(III)设,当时,恒成立,求的取值范围.20.(12分)党的十九大报告提出,转变政府职能,深化简政放权,创新监管方式,增强政府公信力和执行力,建设人民满意的服务型政府,某市为提高政府部门的服务水平,调查群众对两个部门服务的满意程度.现从群众对两个部门的评价(单位:分)中各随机抽取20个样本,根据评价分作出如下茎叶图:从低到高设置“不满意”,“满意”和“很满意”三个等级,在内为“不满意”,在为“满意”,在内为“很满意”.(1)根据茎叶图判断哪个部门的服务更令群众满意?并说明理由;(2)从对部门评价为“很满意”或“满意”的样本中随机抽取3个样本,记这3个样本中评价为“很满意”的样本数量为,求的分布列和期望.(3)以上述样本数据估计总体数据,现在随机邀请5名群众对两个部门的服务水平打分,则至多有1人对两个部门的评价等级相同的概率是多少?(计算结果精确到0.01)21.(12分)如图,在四棱锥中,底面为菱形,,又底面,,为的中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.22.(10分)平顶山市公安局交警支队依据《中华人民共和国道路交通安全法》第条规定:所有主干道路凡机动车途经十字口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以元罚款,记分的行政处罚.如表是本市一主干路段监控设备所抓拍的个月内,机动车驾驶员不“礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路段月份的不“礼让斑马线”违章驾驶员人数.参考公式:,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
利用几何概型求解即可.【题目详解】由几何概型的概率公式得满足x[0,1]的概率为.故选:A【题目点拨】本题主要考查几何概型的概率的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.2、C【解题分析】
由题意可知:|AC|=2|AF|,则∠ACD,利用三角形相似关系可知丨AF丨=丨AD丨,直线AB的切斜角,设直线l方程,代入椭圆方程,利用韦达定理及抛物线弦长公式求得丨AB丨,即可求得|BF|.【题目详解】抛物线y2=4x焦点F(1,0),准线方程l:x=﹣1,准线l与x轴交于H点,过A和B做AD⊥l,BE⊥l,由抛物线的定义可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,|AC|=2|AF|,即|AC|=2|AD|,则∠ACD,由丨HF丨=p=2,∴,则丨AF丨=丨AD丨,设直线AB的方程y(x﹣1),,整理得:3x2﹣10x+3=0,则x1+x2,由抛物线的性质可知:丨AB丨=x1+x2+p,∴丨AF丨+丨BF丨,解得:丨BF丨=4,故选:C.【题目点拨】本题考查抛物线的性质,直线与抛物线的位置关系,考查相似三角形的性质,考查计算能力,数形结合思想,属于中档题.3、B【解题分析】
根据函数求导法则得到相应的结果.【题目详解】A选项应为,C选项应为,D选项应为.故选B.【题目点拨】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.4、D【解题分析】
构造函数g(x)=f(x),利用导数可知函数在(0,+∞)上是减函数,则答案可求.【题目详解】由x2f′(x)<1,得f′(x),即得f′(x)0,令g(x)=f(x),则g′(x)=f′(x)0,∴g(x)=f(x)在(0,+∞)上为单调减函数,∴f()+2<f()+3<f()+4,则f()<f()+1,即f()﹣1<f();f()<f()+1.综上,f()﹣1<f()<f()+1.故选:D.【题目点拨】本题考查利用导数研究函数的单调性,正确构造函数是解题的关键,是中档题.5、D【解题分析】
分别取代入不等式,得到答案.【题目详解】不等式对任意的恒成立取得:取得:排除A,B,C故答案为D【题目点拨】本题考查了不等式恒成立问题,用特殊值法代入数据是解题的关键.6、B【解题分析】
先计算数据的中心点,代入回归方程得到,再代入计算对应值.【题目详解】数据中心点为代入回归方程当时,y的值为故答案选B【题目点拨】本题考查了数据的回归方程,计算数据中心点代入方程是解题的关键,意在考查学生的计算能力.7、B【解题分析】分析:先分别求出集合M和N,由此能求出M和N的关系.详解:,,故.故选:B.点睛:本题考查两个集合的包含关系的判断,考查指数函数、一元二次函数等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8、C【解题分析】
画图标注其位置,即可得出答案。【题目详解】如图所示:,即有3个直角三角形。【题目点拨】本题涉及到了地理相关的经纬度概念。学生需理解其基本概念,将题干所述信息转换为数学相关知识求解。9、B【解题分析】
利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得答案.【题目详解】,复数的虚部是1.故选B.【题目点拨】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10、B【解题分析】
由于直线与直线垂直,且直线的斜率为1,所以直线的斜率为,而直线过点,所以可求出直线的方程,将直线的方程与抛物线方程联立成方程组,求出的中点坐标,然后将其坐标代入中可求出的值.【题目详解】解:由题意可得直线的方程为,设,由,得,所以,所以的中点坐标为,因为点关于直线对称,所以,解得故选:B【题目点拨】此题考查直线与抛物线的位置关系,点关于直线的对称问题,属于基础题.11、B【解题分析】
根据自变量所在的范围代入相应的解析式计算即可得到答案.【题目详解】解得a=-1,故选B【题目点拨】本题考查分段函数函数值的计算,解决策略:(1)在求分段函数的值f(x0)时,一定要判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.12、A【解题分析】
根据自变量范围代入对应解析式,解得结果.【题目详解】故选:A【题目点拨】本题考查分段函数求值,考查基本分析求解能力,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
在平面的投影为的外心,即中点,设球半径为,则,解得答案.【题目详解】,故在平面的投影为的外心,即中点,故球心在直线上,,,设球半径为,则,解得,故.故答案为:.【题目点拨】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.14、【解题分析】
设指数函数为,代入点的坐标求出的值,再求的值.【题目详解】设指数函数为,所以.所以.故答案为【题目点拨】本题主要考查指数函数的解析式的求法和指数函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.15、8【解题分析】
根据题意对进行换元,然后利用基本不等式的推广公式求解出目标的最小值。【题目详解】解:令,,即,所以,当且仅当,即,即当时等号成立.【题目点拨】本题考查了基本不等式推广公式的使用,运用基本不等式推广公式时,一定要注意题意是否满足“一正、二定、三相等”的条件。16、【解题分析】由于等差数列的特征是差,等比数列的特征是比,因此运用类比推理的思维方法可得:,,成等比数列,应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的单调递增区间为,的单调递减区间为.(2)或,函数有个零点,或时,函数有两个零点.【解题分析】分析:(1)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)对分三种情况讨论,利用导数研究函数的单调性,利用单调性结合函数图象以及零点存在定理可得,或,函数有个零点,或时,函数有两个零点.详解:(1)当时,令,得,当时,,当时,,所以的单调递增区间为,的单调递减区间为(2)当时,的定义域为,当时,即时,在上单调递增,易知所以函数有个零点当时,即时,令,得,,且,所以在,上单调递增,在上单调递减由,知,所以,则,因为,所以所以所以当时,函数有个零点当时,的定义域为令,得,,所以在上单调递减,在上单调递增,令,,所以在上单调递减,在上单调递增,所以(当且仅当时等号成立)①当时,,而,,由单调性知,所以内存在零点,即函数在定义内有个两点②当时,,而,,同理内存在零点,即函数值定义域内存在个零点③当时,,所以函数在定义域内有一个零点综上:或,函数有个零点,或时,函数有两个零点点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.18、(1)(2)猜想.见解析【解题分析】
(1)先求得的值,然后根据已知条件求得,由此求得的值.(2)由(1)猜想数列的通项公式为,然后利用数学归纳法进行证明.【题目详解】(1)由,即,①所以,由①得,②,得.当时,;当时,;当时,.(2)由(1)猜想.下面用数学归纳法证明:①当时,由(1)可知猜想成立;②假设时猜想成立,即,此时,当时,,整理得,所以当时猜想成立.综上所述,对任意成立.【题目点拨】本小题主要考查根据递推关系式求数列某些项的值,考查数学归纳法求数列的通项公式,属于中档题.19、(Ⅰ)答案见解析;(Ⅱ);(Ⅲ).【解题分析】试题分析:(I)求得f’(x)=[-x2+2(a-1)x+2a]ex,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.(II)由(I)知,要使得在[-1,1]上单调函数,则:,即可求解a的取值范围;(III)由,分类参数得,构造新函数(x≥1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.试题解析:(I)∵,,∴,由得,则,∴在和上单调递减,在上单调递增,又时,且在上单调递增,∴,∴有最大值,当时取最大值.(II)由(I)知:,或,或;(III)当x≥1时f(x)≤g(x),即(-x2+2ax)ex,,令,则,∴h(x)在上单调递增,∴x≥1时h(x)≥h(1)=1,,又a≥0所以a的取值范围是.点睛:本题主要考查导数在函数中的应用,不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题;(4)考查数形结合思想的应用.20、(1)A部门,理由见解析;(2)的分布列见解析;期望为1;(3)..【解题分析】
(1)通过茎叶图中两部门“叶”的分布即可看出;(2)随机抽取3人,,分别求出相应的概率,即可求出的分布列和期望;(3)求出评价一次两个部门的评价等级不同和相同的概率,随机邀请5名群众,是独立重复实验满足二项分布根据计算公式即可求出.【题目详解】解:(1)通过茎叶图可以看出:A部门的“叶”分布在“茎”的8上,B部门的“叶”分布在“茎”的7上.所以A部门的服务更令群众满意.(2)由茎叶图可知:部门评价为“很满意”或“满意”的样本数量有个,“很满意”的样本数量有个,则从中随机抽取3人,,所以的分布列为:.(3)根据题意可得:A部门“不满意”,“满意”和“很满意”的概率分别为:,,,B部门“不满意”,“满意”和“很满意”的概率分别为:,,.若评价一次两个部门的评价等级不同的概率为:,则评价一次两个部门的评价等级相同的概率为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件设计师考试知识点梳理试题及答案
- 突破难关的2025年软件设计师考试试题答案
- 网络工程师工作环境了解试题及答案
- 西方政治制度与全球治理体系的关系试题及答案
- 公共政策中的公平与效率辩证关系试题及答案
- 网络连接的优化策略试题及答案
- 软件设计师考试2025年的重点科目试题及答案
- 探索西方政治制度中的现代挑战试题及答案
- 医疗器械国产化替代进程中的国际市场拓展与本土化策略报告(2025年)
- 软件设计师工具应用及试题及答案的技巧
- word基础入门公开课课件
- 综合、专科医院执业校验标准
- 学习罗阳青年队故事PPT在急难险重任务中携手拼搏奉献PPT课件(带内容)
- 稀土元素的分离方法-icaredbd课件
- 四年级下数学课件-火车过桥-通用版
- 版式设计课件3,网格系统全攻略
- 船舶防台风安全安全知识
- 国家开放大学《人文英语3》章节测试参考答案
- 用双棱镜干涉测光波(20149)
- 静音房声学设计方案
- 四年级沪教版语文下册阅读理解专项习题含答案
评论
0/150
提交评论