




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上师大附中2024届数学高二第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列命题是真命题的是()A.,B.设是公比为的等比数列,则“”是“为递增数列”的既不充分也不必要条件C.“”是“”的充分不必要条件D.的充要条件是2.已知直线与双曲线分别交于点,若两点在轴上的射影恰好是双曲线的两个焦点,则双曲线的离心率为()A. B. C.4 D.3.若函数,则()A.0 B.-1 C. D.14.以为焦点的抛物线的标准方程是()A. B. C. D.5.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据判断,下列近似公式中最精确的一个是()A. B. C. D.6.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg7.设随机变量服从二项分布,则函数存在零点的概率是()A. B. C. D.8.某校开设10门课程供学生选修,其中、、三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的选修方案种数是()A.70 B.98 C.108 D.1209.命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为()A. B. C. D.10.已知函数满足,与函数图象的交点为,则=()A.0 B. C. D.11.已知函数,若对任意的恒成立,则实数的取值范围是()A. B. C. D.12.设复数z满足=i,则|z|=()A.1 B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.地球的半径为,在北纬东经有一座城市,在北纬东经有一座城市,飞机从城市上空飞到城市上空的最短距离______.14.两个半径为1的铁球,熔化成一个球,这个球的半径是_______.15.如图,在平面四边形中,,,,.若点为上的动点,则的最小值为______.16.对于自然数方幂和,,,求和方法如下:,,…,将上面各式左右两边分别相加,就会有,解得,类比以上过程可以求得,且与无关,则的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)已知矩阵的一个特征值为,其对应的特征向量,求矩阵及它的另一个特征值.(2)在极坐标系中,设P为曲线C:上任意一点,求点P到直线l:的最小距离.18.(12分)如图,一张坐标纸上已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为曲线.(1)求曲线的方程;(2)若直线与轨迹交于、两点,且直线与以为直径的圆相切,若,求的面积的取值范围.19.(12分)已知椭圆E:的离心率为分别是它的左、右焦点,.(1)求椭圆E的方程;(2)过椭圆E的上顶点A作斜率为的两条直线AB,AC,两直线分别与椭圆交于B,C两点,当时,直线BC是否过定点?若是求出该定点,若不是请说明理由.20.(12分)如图,在四面体中,在平面的射影为棱的中点,为棱的中点,过直线作一个平面与平面平行,且与交于点,已知,.(1)证明:为线段的中点(2)求平面与平面所成锐二面角的余弦值.21.(12分)如图,在四棱锥中,平面,四边形为正方形,为的中点,点在上,平面平面.(1)求证:平面;(2)求三棱锥的体积.22.(10分)在中,角所对的边分别是且.(1)求角A;(2)若为钝角三角形,且,当时,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
取特殊值来判断A选项中命题的正误,取特殊数列来判断B选项中命题的正误,求出不等式,利用集合包含关系来判断C选项命题的正误,取特殊向量来说明D选项中命题的正误.【题目详解】对于A选项,当时,,所以,A选项中的命题错误;对于B选项,若,则等比数列的公比为,但数列是递减数列,若,等比数列是递增数列,公比为,所以,“”是“为递增数列”的既不充分也不必要条件,B选项中的命题正确;对于C选项,解不等式,得或,由于,所以,“”是“”的既不充分也不必要条件,C选项中的命题错误;对于D选项,当时,,但与不一定垂直,所以,D选项中的命题错误.故选B.2、A【解题分析】
由直线与双曲线联立,可知x=为其根,整理可得.【题目详解】解:由.,两点在轴上的射影恰好是双曲线的两个焦点,..故选:.【题目点拨】本题考查双曲线的离心率,双曲线的有关性质和双曲线定义的应用,属于中档题.3、B【解题分析】
根据分段函数的解析式代入自变量即可求出函数值.【题目详解】因为,所以,,因为,所以,故,故选B.【题目点拨】本题主要考查了分段函数,属于中档题.4、A【解题分析】
由题意和抛物线的性质判断出抛物线的开口方向,并求出的值,即可写出抛物线的标准方程.【题目详解】因为抛物线的焦点坐标是,
所以抛物线开口向右,且=2,
则抛物线的标准方程.
故选:A.【题目点拨】本题考查抛物线的标准方程以及性质,属于基础题.5、B【解题分析】
利用球体的体积公式得,得出的表达式,再将的近似值代入可得出的最精确的表达式.【题目详解】由球体的体积公式得,,,,,,与最为接近,故选C.【题目点拨】本题考查球体的体积公式,解题的关键在于理解题中定义,考查分析问题和理解问题的能力,属于中等题.6、D【解题分析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.7、C【解题分析】
因为函数存在零点,所以..【题目详解】∵函数存在零点,∴,∴.∵服从,∴.故选【题目点拨】本题主要考查独立重复试验的概率求法以及二项分布,熟记公式是解题的关键,属于简单题.8、B【解题分析】根据题意,分2种情况讨论:①、从A,B,C三门中选出1门,其余7门中选出2门,有种选法,②、从除A,B,C三门之外的7门中选出3门,有种选法;故不同的选法有63+35=98种;故选:B.点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.9、C【解题分析】
如图,在中,可证明,且与交于O,同理可证其余顶点与对面重心的连线交于O,即得解.【题目详解】如图在四面体中,设是的重心,连接并延长交CD于E,连接,则经过,在中,,且与交于O,同理,其余顶点与对面重心的连线交于O,也满足比例关系.故选:C【题目点拨】本题考查了三角形和四面体性质的类比推理,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.10、B【解题分析】
由题意知函数的图象和函数的图象都关于直线对称,可知它们的交点也关于直线对称,于此可得出的值。【题目详解】设,由于,则函数的图象关于直线对称,且函数的图象也关于直线对称,所以,函数与函数的交点也关于直线对称,所以,,令,则,所以,,因此,,故选:B.【题目点拨】本题考查函数的交点坐标之和,考查函数图象的应用,抓住函数图象对称性是解题的关键,同时也要注意抽象函数关系与性质之间的关系,如下所示:(1),则函数的周期为;(2)或,则函数的对称轴为直线;(3),则函数的对称中心为.11、B【解题分析】
对任意的,恒成立对任意的,恒成立,对任意的,恒成立,参变分离得到恒成立,再根据对勾函数的性质求出在上的最小值即可.【题目详解】解:对任意的,,即恒成立对任意的,恒成立,对任意的,恒成立,恒成立,又由对勾函数的性质可知在上单调递增,,,即.故选:.【题目点拨】本题考查了导数的应用,恒成立问题的基本处理方法,属于中档题.12、A【解题分析】试题分析:由题意得,,所以,故选A.考点:复数的运算与复数的模.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求,再求出弧所对应的圆心角,再结合弧长公式运算即可.【题目详解】解:由地球的半径为,则北纬的纬线圈半径为,又两座城市的经度分别为,,故经度差为,则连接两座城市的弦长为,则两地与地球球心连线夹角为,即,则两地之间的距离是,故答案为:.【题目点拨】本题考查了球面距离,重点考查了弧所对应的圆心角及弧长公式,属基础题.14、【解题分析】
等体积法【题目详解】【题目点拨】等体积法15、【解题分析】
建立直角坐标系,得出,,利用向量的数量积公式即可得出,结合,得出的最小值.【题目详解】因为,所以以点为原点,为轴正方向,为轴正方向,建立如图所示的平面直角坐标系,因为,所以,又因为,所以直线的斜率为,易得,因为,所以直线的斜率为,所以直线的方程为,令,解得,所以,设点坐标为,则,则,,所以又因为,所以当时,取得最小值为.【题目点拨】本题主要考查平面向量基本定理及坐标表示、平面向量的数量积以及直线与方程.16、.【解题分析】分析:利用类比法先求出,再求,从而得到答案.详解:利用类比法:,,,…,将上面各式左右两边分别相加,就会有,解得;继续使用类比法:,,,…,将上面各式左右两边分别相加,就会有,解得,.故答案为:.点睛:类比推理应用的类型及相应方法类比推理的应用一般为类比定义、类比性质和类比方法.(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);;(2).【解题分析】
(1)由矩阵运算,代入可求得或,即求得另一个特征值。(2)由直角坐标与极坐标互换公式,实现直角坐标与极坐标的相互转化。【题目详解】(1)由得:,,矩阵的特征多项式为,令,得,解得或所以矩阵的另一个特征值为(2)以极点为原点,极轴为轴建立平面直角坐标系.因为,所以,将其化为普通方程,得将曲线:化为普通方程,得.所以圆心到直线的距离所以到直线的最小距离为【题目点拨】直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。18、(1);(2)【解题分析】
分析:(1)根据垂直平分线的性质可得的轨迹是以为焦点的椭圆,且,可得,的轨迹的方程为;(2)与以为直径的圆相切,则到的距离:,即,由,消去,得,由平面向量数量积公式可得,由三角形面积公式可得,换元后,利用单调性可得结果.详解:(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,由题意知圆E的半径为,∴|ME|+|MP|=|ME|+|MP′|=>|EP|,∴E的轨迹是以E、P为焦点的椭圆,且,∴,∴M的轨迹C的方程为.(2)与以EP为直径的圆x2+y2=1相切,则O到的距离:,即,由,消去y,得(1+2k2)x2+4kmx+2m2﹣2=0,∵直线与椭圆交于两个不同点,∴△=16k2m2﹣8(1+2k2)(m2﹣1)=8k2>0,k2>0,设A(x1,y1),B(x2,y2),则,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=,又,∴,∴,设μ=k4+k2,则,∴,…10分∵S△AOB关于单调递增,∴,∴△AOB的面积的取值范围是点睛:本题主要考查利用定义求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形面积最值的.19、(1);(2)【解题分析】
(1)由题意,,结合的关系即可求解.(2)设直线,,,联立方程可得,又,结合韦达定理可得,化简计算即可求解.【题目详解】(1)因为,所以,又,所以,椭圆的方程为;(2)因为,所以直线斜率存在设直线,,消理得,(*)又理得即所以(*)代入得整理的得,所以直线定点【题目点拨】本题考查椭圆标准方程的求法,直线恒过定点问题,意在考查学生对这些基础知识的理解程度和掌握水平,属中档题.20、(1)见解析(2)【解题分析】分析:(1)根据题中两面平行的条件,结合面面平行的性质,得到线线平行,其中一个点是中点,那就是三角形的中位线,从而得到一定为中点;(2)利用题中所给的相关的垂直的条件,建立相应的坐标系,求得面的法向量,利用法向量所成角的余弦值得到对应二面角的余弦值.详解:(1)证明:平面平面,平面平面,平面平面,,为的中点,为的中点.(2)解:为的中点,,以为坐标原点,建立空间直角坐标系,如图所示,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工厂数字化展厅在线客户互动方案
- 施工质量检查与整改实施方案
- 室外景观照明安装与调试方案
- 建筑材料市场促销策略
- 2025年山东省历年护理考试题库及答案
- 不定期聘用合同样书6篇
- 心律失常常见类型及护理要点介绍
- 家电行业经销商激励方案指南
- 老年大学与终身学习课程创新创业项目商业计划书
- 新版小学英语单元知识点系统总结
- 带式输送机跑偏的处理方法课件
- 《关于惯性力专题》课件
- 4.1项目四任务一 填制商业发票
- 【浅析柏子仁的镇静催眠作用4600字(论文)】
- 第四章 公共政策的制定
- 《社会学概论》教案
- 水下砼切割施工方案
- 销售人员薪酬体系及晋升通道
- 阿基米德的故事课件
- v60呼吸机的使用与维护
- 旅行社合伙人合同范本
评论
0/150
提交评论