




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省汪清六中数学高二下期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱锥中,侧面底面BCD,,,,,直线AC与底面BCD所成角的大小为A. B. C. D.2.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.3.已知,,若,则x的值为()A. B. C. D.4.已知中,,则满足此条件的三角形的个数是()A.0 B.1 C.2 D.无数个5.已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是()A. B. C. D.6.已知定义在上的函数的导函数为,若,且,则不等式的解集为()A. B. C. D.7.复数的虚部为()A. B. C.1 D.-18.如图,在三棱锥中,面,是上两个三等分点,记二面角的平面角为,则()A.有最大值 B.有最大值 C.有最小值 D.有最小值9.在中,,,,则等于()A. B. C. D.10.的展开式中,各项系数的和为32,则该展开式中x的系数为()A.10 B. C.5 D.11.设为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.,则B.,则C.,则D.,则12.已知f(x)为偶函数,且当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则等于()A.-+2 B.1C.3 D.+2二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,则____________.14.已双曲线过点,其渐近线方程为,则双曲线的焦距是_________;15.函数的图象在点处的切线方程是_____________.16.观察下列不等式,……照此规律,第五个不等式为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式前三项中的系数成等差数列.(1)求的值和展开式系数的和;(2)求展开式中所有的有理项.18.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:,)参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.19.(12分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小.(2)若,,求b.20.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马.如图所示,在阳马中,底面.(1)若,斜梁与底面所成角为,求立柱的长(精确到);(2)证明:四面体为鳖臑;(3)若,,,为线段上一个动点,求面积的最小值.21.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出的普通方程和的直角坐标方程:(Ⅱ)设点在上,点在上,求的最小值及此时的直角坐标.22.(10分)已知函数.(Ⅰ)求函数的最大值,并求取最大值时的取值集合;(Ⅱ)若且,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
取BD中点,可证,为直线AC与底面BCD所成角。【题目详解】取BD中点,由,,又侧面底面BCD,所以。所以为直线AC与底面BCD所成角。,所以。选A.【题目点拨】本题考查线面角,用几何法求线面角要一作、二证、三求,要有线面垂直才有线面角。2、C【解题分析】
由可得,故可求的值.【题目详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【题目点拨】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.3、D【解题分析】此题考查向量的数量积解:因为,所以选D.答案:D4、C【解题分析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.5、B【解题分析】,,故函数在区间上递增,,,故函数在上递减.所以,解得,故选B.6、C【解题分析】
构造函数,利用导数判断出函数的单调性,将不等式变形为,结合函数的单调性可解出该不等式.【题目详解】构造函数,则,所以,函数在上单调递减,由,可得,即,解得,因此,不等式的解集为,故选C.【题目点拨】本题考查利用导数求解函数不等式,解决这类不等式的基本步骤如下:(1)根据导数不等式的结构构造新函数;(2)利用导数研究函数的单调性,必要时要考查该函数的奇偶性;(3)将不等式转化为的形式,结合函数的单调性进行求解.7、C【解题分析】
先化简复数,即得复数的虚部.【题目详解】由题得.所以复数的虚部为1.故选C【题目点拨】本题主要考查复数的运算和虚部的概念,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解题分析】
将三棱锥放入长方体中,设,,,计算,,则,得到答案.【题目详解】将三棱锥放入长方体中,设,,,如图所示:过作平面与,与,连接,则为二面角的平面角,设为,则,,故.同理可得:设二面角的平面角为,.,当,即时等号成立.故选:.【题目点拨】本题考查了二面角,和差公式,均值不等式,意在考查学生的计算能力,空间想象能力和综合应用能力.9、D【解题分析】
根据正弦定理,将题中的数据代入,解之即可得到的大小.【题目详解】由正弦定理,得解之可得.故选:D.【题目点拨】本题主要考查解三角形中的正弦定理,已知两角和一边求另一边,通常用正弦定理求解.10、A【解题分析】
令得各项系数和,求得,再由二项式定理求得展开式中x的系数.【题目详解】令得,,二项式为,展开式通项为,令,,所以的系数为.故选:A.【题目点拨】本题考查二项式定理,考查二项展开式中各项系数的和.掌握二项式定理是解题关键.赋值法是求二项展开式中各项系数和的常用方法.11、A【解题分析】
依据空间中点、线、面的位置逐个判断即可.【题目详解】直线所在的方向向量分别记为,则它们分别为的法向量,因,故,从而有,A正确.B、C中可能平行,故B、C错,D中平行、异面、相交都有可能,故D错.综上,选A.【题目点拨】本题考查空间中与点、线、面位置关系有关的命题的真假判断,属于基础题.12、D【解题分析】
函数f(x)为偶函数,可得f(﹣)=f()再将其代入f(x)=2sinx,进行求解,再根据x∈[2,+∞)时f(x)=log2x,求出f(4),从而进行求解;【题目详解】∵函数f(x)为偶函数,∴f(﹣)=f(),∵当x∈[0,2)时f(x)=2sinx,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选:D.【题目点拨】此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、{2,4,6,8}【解题分析】分析:详解:因为,,表示A集合和B集合“加”起来的元素,重复的元素只写一个,所以点睛:在求集合并集时要注意集合的互异性.14、【解题分析】
由渐近线方程设出双曲线方程为,代入已知点的坐标求出,化双曲线方程为标准方程后可得,从而求得。【题目详解】由题意设双曲线方程为,又双曲线过点,∴,∴双曲线方程为,即,,,∴焦距为。故答案为:。【题目点拨】本题考查双曲线的焦距,求双曲线的标准方程。已知双曲线的渐近线方程为,则可设双曲线方程为,代入已知条件求得,即得双曲线方程。而不需考虑焦点所在的轴。15、【解题分析】
首先求出在1处的导数,再求出在1处的函数值,然后用点斜式求出方程即可.【题目详解】,∴且,切线方程是,即.【题目点拨】本题考查利用导数求函数在点处的切线方程,属于基础题.16、:【解题分析】
试题分析:照此规律,第个式子为,第五个为.考点:归纳推理.【名师点睛】归纳推理的定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.是由部分到整体、由个别到一般的推理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),,.【解题分析】
(1)展开式的通项公式为,则前3项的系数分别为1,,,成等差,即可列式求解.(2)由(1)知,则,对r赋值,即可求出所有的有理项.【题目详解】(1)根据题意,()n的展开式的通项为Tr+1=∁nr()n﹣r()r,其系数为∁nr,则前3项的系数分别为1,,,成等差,∴,解可得:或,又由,则,在中,令可得:.(2)由(1)的结论,,则的展开式的通项为,当时,有,当时,有,当时,有;则展开式中所有的有理项为.【题目点拨】本题主要考查二项式定理的应用,通项公式,求展开式中某项的系数,熟练掌握展开式的通项公式是解题的关键,属基础题.18、(1);(2)见解析【解题分析】试题分析:(1)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,做出a的值,写出线性回归方程.
(2)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.试题解析:(1)由数据求得由公式求得再由所以关于的线性回归方程为.(2)当时,,;同样,当时,,所以,该小组所得线性回归方程是理想的.19、(1)(2)【解题分析】
(1)根据正弦定理可解得角B;(2)由余弦定理,将已知代入,可得b.【题目详解】解:(1)由,得,又因B为锐角,解得.(2)由题得,解得.【题目点拨】本题考查正,余弦定理解三角形,属于基础题.20、(1);(2)详见解析;(3).【解题分析】
(1)推导出侧棱在平面上的射影是,从而是侧棱与平面所成角,,从而求得立柱的长.(2)四边形是长方形,从而是直角三角形,由此得出,从而三角形是直角三角形,由平面,得是直角三角形,由此能证明四面体为鳖臑.(3)利用转化法求出异面直线与的距离,即可求得三角形面积的最小值.【题目详解】(1)因为侧棱平面,所以侧棱在底面上的射影是,所以是侧棱与平面所成角,所以,在中,,所以,即,,所以.(2)证明:由题意知四边形是长方形,所以三角形是直角三角形.由于平面,所以,所以三角形和三角形是直角三角形.因为,所以平面,所以,所以三角形是直角三角形.所以四面体为鳖臑.(3)与是两异面直线,,所以平面,则两异面直线与的距离等于到平面的距离,也即到平面的距离,等于到直线的距离.因为,所以,则到的距离为.所以线段上的动点到的最小距离为.则三角形面积的最小值为.【题目点拨】本小题主要考查空间中直线与直线,直线与平面位置关系,考查空间想象能力和逻辑推理能力,属于中档题.21、(Ⅰ)的普通方程为,的直角坐标方程为;(Ⅱ)最小值为,此时的直角坐标为.【解题分析】
(Ⅰ)曲线,利用消掉参数即可,曲线,利用化简即可。(Ⅱ)利用点到直线的距离公式,代入化简即可求出最小值。【题目详解】解:(I)的普通方程为,的直角坐标方程为.(II)由题意,可设点的直角坐标为.因为是直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶楼劳务聘用合同范本
- 矿山工程合同补充协议
- 琥珀蜜蜡购买合同范本
- 餐厅后勤服务合同范本
- 签订版权转让合同范本
- 粉末涂料购销合同范本
- 淘宝店铺过户协议合同
- 甲方物业分工合同范本
- 民间土方出售合同范本
- 济宁标准劳动合同范本
- GB/T 5023.3-2008额定电压450/750 V及以下聚氯乙烯绝缘电缆第3部分:固定布线用无护套电缆
- GB/T 21471-2008锤上钢质自由锻件机械加工余量与公差轴类
- GB/T 12670-2008聚丙烯(PP)树脂
- 非贸项下对外付汇的政策解读和实操疑难解答课件
- 高中心理健康课程《人际关系-寝室篇》课件
- 水产微生物学
- 电力系统继电保护课程设计报告-三段式距离保护
- 香港永久性居民在内地所生中国籍子女赴香港定居申请表
- 部编人教版五年级上册小学道德与法治 第5课 协商决定班级事务 课件
- 跨境电商亚马逊运营实务完整版ppt课件-整套课件-最全教学教程
- GB∕T 31038-2014 高电压柴油发电机组通用技术条件
评论
0/150
提交评论