安徽省黄山市屯溪区第一中学2024届数学高二第二学期期末统考试题含解析_第1页
安徽省黄山市屯溪区第一中学2024届数学高二第二学期期末统考试题含解析_第2页
安徽省黄山市屯溪区第一中学2024届数学高二第二学期期末统考试题含解析_第3页
安徽省黄山市屯溪区第一中学2024届数学高二第二学期期末统考试题含解析_第4页
安徽省黄山市屯溪区第一中学2024届数学高二第二学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省黄山市屯溪区第一中学2024届数学高二第二学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若方程在区间(-1,1)和区间(1,2)上各有一根,则实数的取值范围是()A. B. C. D.或2.若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是()A. B. C. D.3.设函数f(x),g(x)在[A,B]上均可导,且f′(x)<g′(x),则当A<x<B时,有()A.f(x)>g(x)B.f(x)+g(A)<g(x)+f(A)C.f(x)<g(x)D.f(x)+g(B)<g(x)+f(B)4.设关于的不等式组表示的平面区域内存在点满足,则的取值范围是()A. B. C. D.5.用数学归纳法证明(,)时,第一步应验证()A. B. C. D.6.已知具有线性相关关系的变量、,设其样本点为,回归直线方程为,若,(为原点),则()A. B. C. D.7.已知函数(为自然对数的底数),.若存在实数,使得,且,则实数的最大值为()A. B. C. D.18.已知函数,若,均在[1,4]内,且,,则实数的取值范围是()A. B. C. D.9.若非零向量,满足,向量与垂直,则与的夹角为()A. B. C. D.10.正项等比数列中,存在两项使得,且,则的最小值是()A. B.2 C. D.11.的常数项为(

)A.28 B.56 C.112 D.22412.已知集合,现从这两个集合中各取出一个元素组成一个新的双元素集合,则可以组成这样的新集合的个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的所有的整数次幂项的系数之和为__________.14.若复数z=(x2-2x-3)+(x+1)i为纯虚数,则实数15.在直三棱柱中,.有下列条件:①;②;③.其中能成为的充要条件的是__________.(填上序号)16.的展开式中的系数为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项,等差数列满足.(1)求数列,的通项公式;(2)设,求数列的前项和.18.(12分)思南县第九届中小学运动会于2019年6月13日在思南中学举行,组委会在思南中学招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高如图所示的茎叶图(单位:cm),身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.男女9157789998161245898650172345674211801119(1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,求出的分布列和数学期望.19.(12分)如图,已知圆心为的圆经过原点.(Ⅰ)求圆的方程;(Ⅱ)设直线与圆交于,两点.若,求的值.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.21.(12分)已知时,函数,对任意实数都有,且,当时,(1)判断的奇偶性;(2)判断在上的单调性,并给出证明;(3)若且,求的取值范围.22.(10分)如图,已知正四棱柱的底面边长为2,侧棱长为3,,垂足为,交于点.(1)求证:⊥平面;(2)记直线与平面所成的角,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

函数f(x)=在区间(﹣1,1)和区间(1,2)上分别存在一个零点,则,解得即可.【题目详解】∵函数f(x)=ax2﹣2x+1在区间(﹣1,1)和区间(1,2)上分别存在一个零点,∴,即,解得a<1,故选B.【题目点拨】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.2、D【解题分析】试题分析:由得,即,即设,则,则条件等价为,即有解,设,为增函数,∵,∴当时,,当时,,即当时,函数取得极小值为:,即,若有解,则,即,则或,故选D.考点:函数恒成立问题.【方法点晴】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键,综合性较强,难度较大根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.3、B【解题分析】试题分析:设F(x)=f(x)-g(x),∵在[A,B]上f'(x)<g'(x),F′(x)=f′(x)-g′(x)<0,∴F(x)在给定的区间[A,B]上是减函数.∴当x>A时,F(x)<F(A),即f(x)-g(x)<f(A)-g(A)即f(x)+g(A)<g(x)+f(A)考点:利用导数研究函数的单调性4、D【解题分析】

由约束条件,作出可行域如上图所示阴影部分,要使可行域存在,必有,可行域包括上的点,只要边界点在直线的上方,且在直线的下方,故有,解得,选D.点睛:平面区域的最值问题是线性规划的一类重要题型,在解答本题时,关键是画好可行域,分析目标函数的几何意义,然后利用数形结合的思想,找出点的坐标,即可求出答案.5、B【解题分析】

直接利用数学归纳法写出时左边的表达式即可.【题目详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:.【题目点拨】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误.6、D【解题分析】

计算出样本中心点的坐标,将该点坐标代入回归直线方程可求出实数的值.【题目详解】由题意可得,,将点的坐标代入回归直线方程得,解得,故选D.【题目点拨】本题考查利用回归直线方程求参数的值,解题时要熟悉“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.7、C【解题分析】

解方程求得,结合求得的取值范围.将转化为直线和在区间上有交点的问题来求得的最大值.【题目详解】由得,注意到在上为增函数且,所以.由于的定义域为,所以由得.所以由得,画出和的图像如下图所示,其中由图可知的最大值即为.故选C.【题目点拨】本小题主要考查函数零点问题,考查指数方程和对数方程的解法,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于中档题.8、D【解题分析】

先求导,利用函数的单调性,结合,确定;再利用,即,可得,,设,,确定在上递增,在有零点,即可求实数的取值范围.【题目详解】解:,当时,恒成立,则f(x)在(0,+∞)上递增,则f(x)不可能有两个相等的函数值.故;由题设,则=考虑到,即,设,,则在上恒成立,在上递增,在有零点,则,,故实数的取值范围是.【题目点拨】本题考查了通过构造函数,转化为函数存在零点,求参数取值范围的问题,本题的难点是根据已知条件,以及,变形为,,然后构造函数转化为函数零点问题.9、B【解题分析】∵,且与垂直,∴,即,∴,∴,∴与的夹角为.故选.10、A【解题分析】试题分析:由得解得,再由得,所以,所以.考点:数列与基本不等式.【思路点晴】本题主要考查等比数列的基本元思想,考查基本不等式.第一步是解决等比数列的首项和公比,也即求出等比数列的基本元,在求解过程中,先对具体的数值条件进行化简,可求出,由此化简第一个条件,可得到;接下来第二步是基本不等式常用的处理技巧,先乘以一个常数,再除以这个常数,构造基本不等式结构来求.11、C【解题分析】分析:由二项展开式的通项,即可求解展开式的常数项.详解:由题意,二项式展开式的通项为,当时,,故选C.点睛:本题主要考查了二项展开式的指定项的求解,其中熟记二项展开式的通项是解答的关键,着重考查了推理与运算能力.12、C【解题分析】分析:根据解元素的特征可将其分类为:集合中有5和没有5两类进行分析即可.详解:第一类:当集合中无元素5:种,第二类:当集合中有元素5:种,故一共有14种,选C点睛:本题考查了分类分步计数原理,要做到分类不遗漏,分步不重叠是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、122【解题分析】分析:根据二项式定理的通项公式,写出所有的整数次幂项的系数,再求和即可。详解:所以整数次幂项为为整数是,所以系数之和为122点睛:项式定理中的具体某一项时,写出通项的表达式,使其满足题目设置的条件。14、3【解题分析】由题设{x2-2x-3=015、①③【解题分析】分析:由题意,对所给的三个条件,结合直三棱柱中,,作出如图的图象,借助图象对的充要条件进行研究.详解:若①,如图取分别是的中点,可得,由直三棱柱中,可得都垂直于侧面,由此知都垂直于线,又,所以平面,可得,又由是中点及直三棱柱的性质知,故可得,再结合垂直于线,可得面,故有,故①能成为的充要条件,同理③也可,对于条件②,若,可得面,,若,由此可得平面形,矛盾,故不为的充要条件,综上,①③符合题意,故答案为①③.点睛:本题主要考查直棱柱的性质、线面垂直的判定定理及面面垂直的性质,属于难题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.16、【解题分析】由条件知的展开式中的系数为:解得=故答案为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】分析:(1)由题意,当时,,当时,化简得,得数列是首项为1,公比为2等比数列,即可求解,进而得到;(2)由(1)可得,利用乘公比错位相减法,即可求解数列的和.详解:(1)当时,当时,相减得∴数列是首项为1,公比为2等比数列………………3分……4分∴∴……6分(2)……7分……8分相减得……12分点睛:本题主要考查等差、等比数列的通项公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.18、(1);(2)详见解析.【解题分析】

(1)由题意及茎叶图,有“高个子”12人,“非高个子”18人,利用用分层抽样的方法,每个人被抽中的概率是,利用对立事件即可(2)由于从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,利用离散型随机变量的定义及题意可知的取值为0,1,2,3,利用古典概型的概率公式求出每一个值对应事件的概率,有期望的公式求出即可【题目详解】(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是,所以选中的“高个子”有人,“非高个子”有人.用事件A表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”,则因此,至少有一人是“高个子”的概率是.(2)依题意,的取值为0,1,2,3.

的分布列为:0123P所以【题目点拨】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.解题时要注意茎叶图的合理运用.19、(Ⅰ)(Ⅱ)【解题分析】试题分析:(Ⅰ)由两点间距离公式求出圆C的半径,由此能求出圆C的方程;(Ⅱ)作CD⊥AB于D,则CD平分线段AB,从在则|AD|=|AB|=4,由勾股定理求出CD,由点到直线的距离公式求出CD,由此能求出m试题解析:(Ⅰ)解:圆的半径,从而圆的方程为.(Ⅱ)解:作于,则平分线段,所以.在直角三角形中,.由点到直线的距离公式,得,所以,解得.考点:圆的标准方程;直线与圆相交的性质20、(1);(2)4.【解题分析】

(1)直接利用参数方程直角坐标方程和极坐标方程之间的转换求出结果.(2)利用直线的参数方程的转换,利用一元二次方程根和系数关系的应用求出结果.【题目详解】(1)由参数方程,得普通方程,所以极坐标方程.(2)设点对应的参数分别为,将代入得得所以,直线l(t为参数)可化为,所以.【题目点拨】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论