版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江哈尔滨市第三中学数学高二下期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,则角为()A. B. C. D.2.同学聚会时,某宿舍的4位同学和班主任老师排队合影留念,其中宿舍长必须和班主任相邻,则5人不同的排法种数为()A.48 B.56 C.60 D.1203.已知点在椭圆上,、分别是椭圆的左、右焦点,的中点在轴上,则等于()A. B. C. D.4.已知随机变量X的分布列如下表所示则的值等于A.1 B.2 C.3 D.45.已知向量,,则向量在向量上的投影是()A.2 B.1 C.−1 D.−26.给出命题①零向量的长度为零,方向是任意的.②若,都是单位向量,则.③向量与向量相等.④若非零向量与是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.① B.② C.①和③ D.①和④7.设函数,()A.3 B.6 C.9 D.128.执行下面的程序框图,如果输入的,那么输出的()A. B.C. D.9.已知函数的图象如图,则与的关系是:()A. B.C. D.不能确定10.如图,在正方形内任取一点,则点恰好取自阴影部分内的概率为()A. B.C. D.11.若a>b>c,ac<0,则下列不等式一定成立的是A.ab>0 B.bc<0 C.ab>ac D.b(a-c)>012.若满足约束条件则的最大值为()A.5 B. C.4 D.3二、填空题:本题共4小题,每小题5分,共20分。13.设随机变量ξ的概率分布列为P(ξ=k)=ck+1,k=0,114.已知地球半径为,处于同一经度上的甲乙两地,甲地纬度为北纬75°,乙地纬度为北纬15°,则甲乙两地的球面距离是________15.已知非零向量,,满足:,且不等式恒成立,则实数的最大值为__________.16.设,则的展开式中的常数项为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求证:恒成立;(2)试求的单调区间;(3)若,,且,其中,求证:恒成立.18.(12分)已知集合,,若,求实数的取值范围.19.(12分)2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:评价等级★★★★★★★★★★★★★★★分数0~2021〜4041〜6061~8081〜100人数5212675(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.20.(12分)已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.(1)求椭圆的方程;(2)椭圆,设过点斜率存在且不为0的直线交椭圆于两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.21.(12分)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.22.(10分)近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用余弦定理解出即可.【题目详解】【题目点拨】本题考查余弦定理的基本应用,属于基础题.2、A【解题分析】
采用捆绑法,然后全排列【题目详解】宿舍长必须和班主任相邻则有种可能,然后运用捆绑法,将其看成一个整体,然后全排列,故一共有种不同的排法故选【题目点拨】本题考查了排列中的位置问题,运用捆绑法来解答即可,较为基础3、A【解题分析】由题意可得,设P,且,所以=,选A.【题目点拨】若,是椭圆的左、右焦点,且,则点P的坐标为.4、A【解题分析】
先求出b的值,再利用期望公式求出E(X),再利用公式求出.【题目详解】由题得,所以所以.故答案为:A【题目点拨】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)若(a、b是常数),是随机变量,则也是随机变量,,.5、D【解题分析】
本题考察的是对投影的理解,一个向量在另一个向量上的投影即一个投影在另一个投影方向上的长度.【题目详解】在上的投影方向相反,长度为2,所以答案是.【题目点拨】本题可以通过作图来得出答案.6、A【解题分析】
根据零向量和单位向量的定义,易知①正确②错误,由向量的表示方法可知③错误,由共线向量的定义和四点共线的意义可判断④错误【题目详解】根据零向量的定义可知①正确;根据单位向量的定义,单位向量的模相等,但方向可不同,故两个单位向量不一定相等,故②错误;与向量互为相反向量,故③错误;若与是共线向量,那么可以在一条直线上,也可以不在一条直线上,只要它们的方向相同或相反即可,故④错误,故选A.【题目点拨】向量中有一些容易混淆的概念,如共线向量,它指两个向量方向相同或相反,这两个向量对应的起点和终点可以不在一条直线上,实际上共线向量就是平行向量.7、C【解题分析】分析:由-2<1,知两个函数值要选用不同的表达式计算即可.详解:,,∴.故选C.点睛:本题考查分段函数,解题时要根据自变量的不同范围选用不同的表达式计算.8、D【解题分析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各个变量值的变化情况,可得结论.详解:模拟程序的运行过程,分析循环中各个变量值的变化情况,可得程序的作用是求和,即,故选D.点睛:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.9、B【解题分析】
通过导数的几何意义结合图像即得答案.【题目详解】由于导数表示的几何意义是切线斜率,而由图可知,在A处的切线倾斜角小于在B处切线倾斜角,且都在第二象限,故,答案为B.【题目点拨】本题主要考查导数的几何意义,比较基础.10、B【解题分析】
由定积分的运算得:S阴(1)dx=(x),由几何概型中的面积型得:P(A),得解.【题目详解】由图可知曲线与正方形在第一象限的交点坐标为(1,1),由定积分的定义可得:S阴(1)dx=(x),设“点M恰好取自阴影部分内”为事件A,由几何概型中的面积型可得:P(A),故选B.【题目点拨】本题考查了定积分的运算及几何概型中的面积型,考查基本初等函数的导数,属基础题11、C【解题分析】
取特殊值a=1,b=0,c=-1进行验证即可。【题目详解】取a=1,b=0,c=-1代入,排除A、B、D,故选:C。【题目点拨】本题考查不等式的基本性质,不等式的基本性质、特殊值法是两种常用方法,但在利用特殊值法时取特殊值时要全面。12、A【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】由约束条件作出可行域如图,
联立,可得,
化目标函数为,
由图可知,当直线过A时,直线在y轴上的截距最大,z有最大值为.
故选:A.【题目点拨】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】∵所有事件发生的概率之和为1,即P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1,∴,∴c=1225,∴P(ξ=k)=1225(k+1),∴P(ξ=2)=.故答案为.14、【解题分析】
同一纬度的两地之间与球心共在一个大圆上,根据纬度差即可求得圆心角,进而求得两地间距离.【题目详解】由题意可知,同一纬度的两地之间与球心共在一个大圆上当甲地纬度为北纬75°,乙地纬度为北纬15°,则两地间所在的大圆圆心角为60°所以两地的球面距离为故答案为【题目点拨】本题考查了球的截面性质,大圆及球面距离的求法,属于基础题.15、4.【解题分析】
法一:采用数形结合,可判断的终点是在以AB为直径的圆上,从而分离参数转化成恒成立问题即可得到答案.法二:(特殊值法)可先设,,,利用找出的轨迹,从而将不等式恒成立问题转化为函数问题求解.【题目详解】法一:作出相关图形,设,,由于,所以,且这两个向量共起点,所以的终点是在以AB为直径的圆上,可设,所以由图可知,,所,等价于,,所以,答案为4.法二:(特殊值法)不妨设,,,则,,,由于可得整理得,可得圆的参数方程为:,则相当于恒成立,即求得,即求的最大值即可,,所以,因此.故答案为4.【题目点拨】本题主要考查向量的相关运算,参数方程的运用,不等式恒成立问题,意在考查学生的综合转化能力,逻辑推理能力,计算能力,难度较大.16、-160.【解题分析】由,所以二项式展开式的常数项为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)单调递增区间为,无单调递减区间。(3)证明见解析【解题分析】
(1)构造函数,利用导数求出函数的最小值,利用来证明所证不等式成立;(2)先解等式可得出函数的定义域,求出该函数的导数,利用(1)中的结论得出在定义域内恒成立,由此可得出函数的单调区间;(3)证法一:利用分析法得出要证,即证,利用数学归纳法和单调性证明出对任意的恒成立,再利用(1)中的不等式即可得证;证法二:利用数学归纳法证明,先验证当时,不等式成立,即,再假设当时不等式成立,即,利用函数的单调性得出,由归纳原理证明所证不等式成立.【题目详解】(1)令,则,由得,由得.函数在上单调递减,在上单调递增,,即恒成立;(2)由得或,函数的定义域为,因为,由(1)可知当时,恒成立,且,.函数单调递增区间为,,无单调递减区间;(3)证法一:,要证,即证,即证,即证.先证对任意,,即,即.构造函数,其中,则,则函数在上单调递增,,所以,对任意的,,即,.下面证明对任意的,.,.假设当时,,则当时,.由上可知,对任意的,.由(1)可知,当时,,,,因此,对任意的,;证法二:数学归纳法①当时,,,,,即成立;②假设当时结论成立,即成立.由(2)知,函数在上单调递增,,又,,,当时结论成立综合①②,恒成立.【题目点拨】本题考查利用导数证明不等式以及利用导数求函数的单调区间,同时也考查了利用数学归纳法证明不等式,证明时应充分利用导数分析函数的单调性,考查逻辑推理能力,属于难题.18、【解题分析】
化简集合A,B,由知,即可求解.【题目详解】由,得,,【题目点拨】本题主要考查了集合的交集,集合的子集,属于中档题.19、(1)(2)(i)(ii)【解题分析】
(1)从表格中找出评价为四星和五星的人数之和,再除以总数可得出所求频率;(2)(i)记事件恰有2名评价为五星1名评价为一星,然后利用独立重复试验的概率可求出事件的概率;(ii)由题意得出,然后利用二项分布的方差公式可得出的值。【题目详解】(1)由给出的数据可得,评价为四星的人数为6,评价为五星的人数是75,故评价在四星以上(包括四星)的人数为,故可估计观众对《流浪地球》的评价在四星以上(包括四星)的频率为0.81(或);(2)(i)记“恰有2名评价为五星1名评价为一星”为事件A,则;(ii)由题可知,故.【题目点拨】本题第(1)考查频率的计算,第(2)文考查独立重复试验的概率以及二项分布方差的计算,解题前要弄清事件的基本类型以及随机变量所服从的分布列类型,再利用相关公式求解,考查计算能力,属于中等题。20、(1)(2)存在点使得.【解题分析】分析:(1)根据已知列方程组,解方程组即得椭圆的方程.(2)先假设存在,再化简已知得到,所以存在.详解:(1)由已知椭圆方程为,设椭圆的焦点,由到直线的距离为3,得,又椭圆的离心率,所以,又,求得,.椭圆方程为.(2)存在.理由如下:由(1)得椭圆,设直线的方程为,联立,消去并整理得..设,,则,.假设存在点满足条件,由于,所以平分.易知直线与直线的倾斜角互补,∴.即,即.(*)将,代入(*)并整理得,∴,整理得,即,∴当时,无论取何值均成立.∴存在点使得.点睛:(1)本题主要考查椭圆的方程,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论