陕西咸阳市2024届数学高二第二学期期末考试模拟试题含解析_第1页
陕西咸阳市2024届数学高二第二学期期末考试模拟试题含解析_第2页
陕西咸阳市2024届数学高二第二学期期末考试模拟试题含解析_第3页
陕西咸阳市2024届数学高二第二学期期末考试模拟试题含解析_第4页
陕西咸阳市2024届数学高二第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西咸阳市2024届数学高二第二学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有一项活动,在4名男生和3名女生中选2人参加,必须有男生参加的选法有()种.A.18 B.20 C.24 D.302.已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是()A.变量之间呈现负相关关系B.的值等于5C.变量之间的相关系数D.由表格数据知,该回归直线必过点3.可以整除(其中)的是()A.9 B.10 C.11 D.124.定积分等于()A. B. C. D.5.已知命题:“,有成立”,则命题为()A.,有成立 B.,有成立C.,有成立 D.,有成立6.已知函数的图像关于点对称,曲线在点处的切线过点,设曲线在处的切线的倾斜角为,则的值为()A. B. C. D.7.已知函数与(且)的图象关于直线对称,则“是增函数”的一个充分不必要条件是()A. B. C. D.8.已知为的一个对称中心,则的对称轴可能为()A. B. C. D.9.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A.24种 B.30种 C.36种 D.72种10.已知复数满足,则()A.1 B. C.2 D.311.是虚数单位,若,则的值是()A. B. C. D.12.在四边形中,如果,,那么四边形的形状是()A.矩形 B.菱形 C.正方形 D.直角梯形二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足(1+i)z=1+i3,则z的模等于14.已知点分别是双曲线:的左右两焦点,过点的直线与双曲线的左右两支分别交于两点,若是以为顶角的等腰三角形,其中,则双曲线离心率的取值范围为______.15.已知复数的共轭复数是,且,则的虚部是__________.16.设函数,已知,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为(若>100.则取为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)(Ⅱ)求的分布列和数学期望.18.(12分)已知函数.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)已知,且,求的值.19.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点,l和C交于A,B两点,求.20.(12分)已知的最小正周期为.(1)求的值;(2)在中,角,,所对的边分别是为,,,若,求角的大小以及的取值范围.21.(12分)已知函数(I)求在(为自然对数的底数)处的切线方程.(II)求的最小值.22.(10分)在四棱锥中,底面是矩形,平面,,,以的中点为球心、为直径的球面交于点,交于点.(1)求证:平面;(2)求直线与平面所成的角的大小;(3)求点到平面的距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

分类:(1)人中有人是男生;(2)人都是男生.【题目详解】若人中有人是男生,则有种;若人都是男生,则有种;则共有种选法.【题目点拨】排列组合中,首先对于两个基本原理:分类加法、分步乘法,要能充分理解,它是后面解答排列组合综合问题的基础.2、C【解题分析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=﹣0.7<0,负相关.对于B:根据表中数据:=1.可得=2.即,解得:m=3.对于C:相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D:由线性回归方程一定过(,),即(1,2).故选:C.点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.3、C【解题分析】分析:,利用二项展开式可证明能被11整除.详解:.故能整除(其中)的是11.故选C.点睛:本题考查利用二项式定理证明整除问题,属基础题.4、B【解题分析】

由定积分表示半个圆的面积,再由圆的面积公式可求结果。【题目详解】由题意可知定积分表示半径为的半个圆的面积,所以,选B.【题目点拨】1.由函数图象或曲线围成的曲边图形面积的计算及应用,一般转化为定积分的计算及应用,但一定要找准积分上限、下限及被积函数,且当图形的边界不同时,要讨论解决.(1)画出图形,确定图形范围;(2)解方程组求出图形交点坐标,确定积分上、下限;(3)确定被积函数,注意分清函数图形的上、下位置;(4)计算定积分,求出平面图形的面积.2.由函数求其定积分,能用公式的利用公式计算,有些特殊函数可根据其几何意义,求出其围成的几何图形的面积,即其定积分.有些由函数的性质求函数的定积分。5、B【解题分析】

特称命题的否定是全称命题。【题目详解】特称命题的否定是全称命题,所以,有成立的否定是,有成立,故选B.【题目点拨】本题考查特称命题的否定命题,属于基础题。6、C【解题分析】

由题意可得对任意恒成立,可得,,根据导数的几何意义可得在点处切线的斜率,进而可求出在点处切线的方程,将点代入切线的方程即可求出,进而可求出,再利用诱导公式及同角三角函数关系,即可到答案.【题目详解】因为函数的图像关于点对称,所以对任意恒成立,即对任意恒成立,即对任意恒成立,所以,,所以,所以,所以函数在处的切线的斜率,又,所以切线的方程为,又切线过点,所以,解得,所以函数在处的切线的斜率,所以,所以,所以.故选:C.【题目点拨】本题考查函数的对称中心方程应用,导数的几何意义及在一点处的切线的方程,同时考查诱导公式和同角基本关系,属于中档题.7、C【解题分析】分析:先求出,再利用充分不必要条件的定义得到充分不必要条件.详解:因为函数与(且)的图象关于直线对称,所以.选项A,是“是增函数”的非充分非必要条件,所以是错误的.选项B,是“是增函数”的非充分非必要条件,所以是错误的.选项C,是“是增函数”的充分非必要条件,所以是正确的.选项D,是“是增函数”的充分必要条件,所以是错误的.故答案为C.点睛:(1)本题主要考查充分条件必要条件的判断,意在考查学生对这些知识的掌握水平.(2)已知命题是条件,命题是结论,充分条件:若,则是充分条件.必要条件:若,则是必要条件.8、B【解题分析】

由题意首先确定的值,然后求解函数的对称轴即可.【题目详解】由题意可知,当时,,据此可得:,令可得,则函数的解析式为,函数的对称轴满足:,解得:,令可知函数的一条对称轴为,且很明显选项ACD不是函数的对称轴.本题选择B选项.【题目点拨】本题主要考查三角函数解析式的求解,三角函数对称轴方程的求解等知识,意在考查学生的转化能力和计算求解能力.9、B【解题分析】

首先对甲、乙、丙、丁进行分组,减去甲、乙两人在同一个项目一种情况,然后进行3个地方的全排列即可得到答案.【题目详解】先将甲、乙、丙、丁分成三组(每组至少一人)人数分配是1,1,2共有种情况,又甲、乙两人不能到同一个项目,故只有5种分组情况,然后分配到三个不同地方,所以不同的安排方式有种,故答案选B.【题目点拨】本题主要考查排列组合的相关计算,意在考查学生的分析能力,逻辑推理能力和计算能力,难度不大.10、B【解题分析】分析:利用复数的除法求出,进而得到.详解:由题故选B.点睛:本题考查复数逇除法运算及复数的模,属基础题.11、C【解题分析】

12、A【解题分析】

由可判断出四边形为平行四边形,由可得出,由此判断出四边形的形状.【题目详解】,所以,四边形为平行四边形,由可得出,因此,平行四边形为矩形,故选A.【题目点拨】本题考查利用向量关系判断四边形的形状,判断时要将向量关系转化为线线关系,考查转化与化归思想,同时也考查了推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z,由此能求出|z|.【题目详解】∵复数满足(1+i)z=1+i∴z=1+∴|z|=1.故答案为1.【题目点拨】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14、【解题分析】分析:根据双曲线的定义,可求得,设,由余弦定理可得,,进而可得结果.详解:如图,,又,则有,不妨假设,则有,可得,中余弦定理,,,即,故答案为.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求离心率范围问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.15、【解题分析】

设复数,代入等式得到答案.【题目详解】设复数故答案为【题目点拨】本题考查了复数的化简,共轭复数,复数的模,意在考查学生的计算能力和对复数知识的灵活运用.16、【解题分析】

对分离常数后,通过对比和的表达式,求得的值.【题目详解】依题意,,.【题目点拨】本小题主要考查函数求值,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解题分析】

(I)先依题意预测出高三的6次考试成绩,由平均数的公式,分别计算即可;(Ⅱ)由题意先写出随机变量的取值,以及对应的概率,即可求出分布列和期望.【题目详解】(I)由已知,预测高三的6次考试成绩如下:第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲7886899698100乙8185929496100甲高三的6次考试平均成绩为,乙高三的6次考试平均成绩为所以预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别约为91,91.(Ⅱ)因为为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,所以=0,1,2,3所以,,,.所以的分布列为0123所以【题目点拨】本题主要考查平均数的计算以及离散型随机变量的分布列与期望,属于基础题型.18、(Ⅰ),;(Ⅱ).【解题分析】分析:(1)根据两角和差公式将表达式化一,进而得到周期和单调区间;(2),通过配凑角得到,展开求值即可.详解:(Ⅰ),,令,,函数的单调递减区间为.(Ⅱ),,,,则,.点睛:这个题目考查了三角函数的化一求值,两角和差公式的化简,配凑角的应用;三角函数的求值化简,常用的还有三姐妹的应用,一般,,这三者我们成为三姐妹,结合,可以知一求三.19、(1)..(2).【解题分析】

(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【题目详解】(1)消去参数α得,即C的普通方程为.由,得,(*)将,代入(*),化简得,所以直线l的倾斜角为.(2)由(1),知点在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),代入并化简,得,,设A,B两点对应的参数分别为,,则,,所以,,所以.【题目点拨】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算.20、(1);(2),.【解题分析】试题分析:(1)根据三角恒等变换的公式,得,根据周期,得,即,即可求解的值;(2)根据正弦定理和三角恒等变换的公式,化简,可得,可得,进而求得,即可求解的取值范围.试题解析:(1)∵,由函数的最小正周期为,即,得,∴,∴.(2)∵,∴由正弦定理可得,∴.∵,∴.∵,.∵,∴,∴,∴,∴.21、(I);(II)【解题分析】

(I)对函数求导,把分别代入导数与原函数中求出,,由点斜式即可得到切线方程;(II)求出函数的定义域,分别令导数大于零和小于零,结合定义域,解出的范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论