




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市栖霞市2024届数学高二第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若的展开式中的第五、六项二项式系数最大,则该展开式中常数项为()A. B.84 C. D.362.已知集合则=()A. B. C. D.3.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件为“三个人去的景点各不相同”,事件为“甲独自去一个景点,乙、丙去剩下的景点”,则等于()A. B. C. D.4.若焦点在轴上的双曲线的离心率为,则该双曲线的一个顶点到其中一条渐近线的距离为()A. B. C. D.5.设复数z满足,z在复平面内对应的点为(x,y),则A. B. C. D.6.若△ABC的内角A,B,C的对边分别为a,b,c,且,△ABC的面,则a=()A.1 B. C. D.7.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()A.150种 B.180种 C.240种 D.540种8.袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次,若抽到各球的机会均等,事件“三次抽到的号码之和为6”,事件“三次抽到的号码都是2”,则()A. B. C. D.9.已知向量,若,则实数()A. B. C. D.10.若一圆柱的侧面积等于其表面积的,则该圆柱的母线长与底面半径之比为()A.1:1 B.2:1 C.3:1 D.4:111.把四个不同的小球放入三个分别标有号的盒子中,不允许有空盒子的放法有()A.12种 B.24种 C.36种 D.48种12.直线(为参数)上与点的距离等于的点的坐标是A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,,其中i为虚数单位,若为纯虚数,则实数a的值为_______.14.三棱锥P﹣ABC中,PA=PB=AB=AC=BC,M是PA的中点,N是AB的中点,当二面角P﹣AB﹣C为时,则直线BM与CN所成角的余弦值为______.15.若展开式的各二项式系数和为16,则展开式中奇数项的系数和为______.16.某公司生产甲、乙、丙三种型号的吊车,产量分别为120台,600台和200台,为检验该公司的产品质量,现用分层抽样的方法抽取46台进行检验,则抽到乙种型号的吊车应是____台.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求函数在区间上的最小值;(Ⅱ)判断函数在区间上零点的个数.18.(12分)已知.(1)求的解集;(2)设,求证:.19.(12分)如图,在四棱锥中,是边长为2的正方形,平面平面,直线与平面所成的角为,.(1)若,分别为,的中点,求证:直线平面;(2)求二面角的正弦值.20.(12分)设曲线.(Ⅰ)若曲线表示圆,求实数的取值范围;(Ⅱ)当时,若直线与曲线交于两点,且,求实数的值.21.(12分)已知是第三象限角,且.(1)求,的值;(2)求的值.22.(10分)椭圆经过点,左、右焦点分别是,,点在椭圆上,且满足的点只有两个.(Ⅰ)求椭圆的方程;(Ⅱ)过且不垂直于坐标轴的直线交椭圆于,两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
先由的展开式中的第五、六项二项式系数最大,求解n,写出通项公式,令,求出r代入,即得解.【题目详解】由于的展开式中的第五、六项二项式系数最大,故,二项式的通项公式为:令可得:故选:B【题目点拨】本题考查了二项式定理的应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.2、D【解题分析】因为集合B中,x∈A,所以当x=1时,y=3-2=1;当x=2时,y=3×2-2=4;当x=3时,y=3×3-2=7;当x=4时,y=3×4-2=10.即B={1,4,7,10}.又因为A={1,2,3,4},所以A∩B={1,4}.故选D.3、C【解题分析】
这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【题目详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有种;另外,三个人去不同景点对应的基本事件有种,所以,故选C.【题目点拨】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键.4、C【解题分析】
先由双曲线的离心率的值求出的值,然后求出双曲线的顶点坐标和渐近线方程,再利用点到直线的距离公式可求出结果【题目详解】解:因为焦点在轴上的双曲线的离心率为,所以,解得,所以双曲线方程为,其顶点为,渐近线方程为由双曲线的对称性可知,只要求出其中一个顶点到一条渐近线的距离即可不妨求点到直线的距离故选:C【题目点拨】此题考查了双曲线的有关知识和点到直线的距离公式,属于基础题5、C【解题分析】
本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x,y)和点(0,1)之间的距离为1,可选正确答案C.【题目详解】则.故选C.【题目点拨】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.6、A【解题分析】
根据三角形面积公式可得,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【题目详解】因为,,面积,所以.所以.所以,.所以.故选A.【题目点拨】本题考查正余弦定理,面积公式,基础题.7、A【解题分析】先将个人分成三组,或,分组方法有中,再将三组全排列有种,故总的方法数有种.选A.8、A【解题分析】
试题分析:由题意得,事件“三次抽到的号码之和为”的概率为,事件同时发生的概率为,所以根据条件概率的计算公式.考点:条件概率的计算.9、B【解题分析】
由题得,解方程即得解.【题目详解】因为,所以.故选B【题目点拨】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的理解掌握水平和分析推理能力.10、B【解题分析】
设这个圆柱的母线长为,底面半径为,根据已知条件列等式,化简可得答案.【题目详解】设这个圆柱的母线长为,底面半径为,则,化简得,即,故选:B【题目点拨】本题考查了圆柱的侧面积公式,考查了圆柱的表面积公式,属于基础题.11、C【解题分析】
先从4个球中选2个组成复合元素,再把个元素(包括复合元素)放入个不同的盒子,即可得出答案.【题目详解】从个球中选出个组成复合元素有种方法,再把个元素(包括复合元素)放入个不同的盒子中有种放法,所以四个不同的小球放入三个分别标有号的盒子中,不允许有空盒子的放法有,故选C.【题目点拨】本题主要考查了排列与组合的简单应用,属于基础题.12、D【解题分析】
直接利用两点间的距离公式求出t的值,再求出点的坐标.【题目详解】由,得,则,则所求点的坐标为或.故选D【题目点拨】本题主要考查直线的参数方程和两点间的距离公式,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】为纯虚数,则14、【解题分析】
先连结PN,根据题意,∠PNC为二面角P-AB-C的平面角,得到∠PNC=,根据向量的方法,求出两直线方向向量的夹角,即可得出结果.【题目详解】解:连结PN,因为N为AB中点,PA=PB,CA=CB,所以,,所以,∠PNC为二面角P-AB-C的平面角,所以,∠PNC=,设PA=PB=AB=AC=BC=2,则CN=PN=BM=,,设直线BM与CN所成角为,,【题目点拨】本题主要考查异面直线所成的角,灵活运用向量法求解即可,属于常考题型.15、353【解题分析】分析:由题意可得,由此解得,分别令和,两式相加求得结果.详解:由题意可得,由此解得,即则令得令得,两式相加可得展开式中奇数项的系数和为即答案为353.点睛:本题主要考查二项式定理,二项展开式的通项公式,求展开式中奇数项的系数和,解题时注意赋值法的应用,属于中档题.16、30;【解题分析】
根据分层抽样的特点,抽出样本46台中乙种型号的吊车的比例,与总体中乙种型号的吊车的比例相等.【题目详解】抽到乙种型号的吊车x台,则x46=600【题目点拨】本题考查简单随机抽样中的分层抽样.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,的最小值为;当时,的最小值为;(2)见解析.【解题分析】分析:⑴求导后分类讨论的取值,结合单调性求出最小值⑵分离参量,转化为图像交点问题详解:(Ⅰ)因为,①当时,,所以在上是增函数,无最小值;②当时,又得,由得∴在上是减函数,在上是增函数,若,则在上是减函数,则;若,则在上是减函数,在上是增函数,∴综上:当时,的最小值为;当时,的最小值为(Ⅱ)由得令,则,由得,由得,所以在上是减函数,在上是增函数,且,且,当时,,所以,当时,无有零点;当或时,有1个零点;当时,有2个零点.点睛:本题考查了含有参量的导数题目,依据导数,分类讨论参量的取值范围,来求出函数的单调性,从而得到最小值,在零点个数问题上将其转化为两个图像的交点问题。18、(1);(2)证明见解析.【解题分析】
(1)利用零点分段法,写出的分段函数形式,分类讨论求解即可(2)根据,,利用作差法即可求证【题目详解】(1)当时,由,得,解得,所以;当时,,成立;当时,由,得,解得,所以.综上,的解集.(2)证明:因为,所以,.所以,所以.【题目点拨】本题考查利用零点分段法解决绝对值不等式求解、利用作差法处理两式大小关系的证明19、(1)证明见解析;(2)【解题分析】
(1)由平面平面得到平面,从而,根据,得到平面,得到,结合,得到平面;(2)为原点,建立空间坐标系,得到平面和平面的法向量,利用向量的夹角公式,得到法向量之间的夹角余弦,从而得到二面角的正弦值.【题目详解】(1)证明:∵平面平面,平面平面,,平面,∴平面,则为直线与平面所成的角,为,∴,而平面,∴又,为的中点,∴,平面,则平面,而平面∴,又,分别为,的中点,则,正方形中,,∴,又平面,,∴直线平面;(2)解:以为坐标原点,分别以,所在直线为,轴,过作的平行线为轴建立如图所示空间直角坐标系,则,,,,,,,设平面的法向量为,则,即,取,得;设平面的法向量为,则,即,取,得.∴.∴二面角的正弦值为.【题目点拨】本题考查面面垂直的性质,线面垂直的性质和判定,利用空间向量求二面角的正弦值,属于中档题.20、(1)或.(2).【解题分析】分析:(Ⅰ)根据圆的一般方程的条件列不等式求出的范围;
(Ⅱ)利用垂径定理得出圆的半径,从而得出的值.详解:(Ⅰ)曲线C变形可得:,由可得或(Ⅱ)因为a=3,所以C的方程为即,所以圆心C(3,0),半径,因为所以C到直线AB的距离,解得..点睛:本题考查了圆的标准方程,考查圆的弦长的求法,属于基础题.21、(1),;(2)【解题分析】
(1)利用诱导公式化简已知条件求得的值,进而求得的值,再根据二倍角公式求得的值.(2)利用结合两角和的正弦公式,以及(1)的结果,求得的值.【题目详解】解:(1)由,有,又由是第三象限角,有,则,,(2)由,.【题目点拨】本小题主要考查诱导公式、同角三角函数的基本关系式,考查二倍角公式和两角和的正弦公式,属于中档题.22、(Ⅰ);(Ⅱ)详见解析.【解题分析】
(Ⅰ)由题得点为椭圆的上下顶点,得到a,b,c的方程组,解方程组即得椭圆的标准方程;(Ⅱ)设直线的方程为,联立直线和椭圆方程得到韦达定理,根据得到.所以存在点,使得的平分线是轴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国复合饮料稳定添加剂行业市场分析及投资价值评估前景预测报告
- 第一章 第一节 《疆域》说课稿2025-2026学年人教版初中地理八年级上册
- 零件的弯曲说课稿中职专业课-钳工加工技术-机械制造技术-装备制造大类
- 高等院校考试题目及答案
- 三年级上册道德与法治教学设计-2.1我和小伙伴 ∣北师大版
- 2024年春八年级生物下册 8.1.2 免疫与计划免疫说课稿 (新版)新人教版
- 2025年健身教练中级考试题库及模拟题答案解析
- 2025年医药流通领域物流专员面试模拟题集
- 2025年健康管理师初级专业基础能力测试卷
- 2025年乡村手工艺合作社招聘面试题预测及解析
- 广东省深圳市罗湖区2025-2026学年高三第一学期开学质量检测语文(含答案)
- 基于PLC的果园灌溉施肥系统设计
- 2025年武汉市中考英语试卷真题(含答案)
- 无人机清洗玻璃幕墙技术规范
- 基于人工智能的个性化学习路径研究
- 浙江省舟山市2024-2025学年高二下学期6月期末物理+答案
- 2025年陕西省中考英语试题卷(含答案及解析)
- 2025年中国咖啡行业行业市场调查研究及投资前景预测报告
- 学前卫生考试试题及答案
- 2025春季学期国开电大专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 2025年戏剧与影视学专业考研试题及答案
评论
0/150
提交评论