




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州第十六中学2023年数学九年级第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若反比例函数的图象经过点(2,-3),则k值是()A.6 B.-6 C. D.2.如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是()A. B. C. D.3.在下列四个函数中,当时,随的增大而减小的函数是()A. B. C. D.4.方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.55.在一个不透明的盒子中装有2个白球,若干个黄球,它们除了颜色不同外,其余均相同.若从中随机摸出一个白球的概率是,则黄球的个数为()A.2 B.3 C.4 D.66.用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cm B.2cm C.3cm D.4cm7.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上8.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,,则的值为()A. B. C. D.9.对于两个不相等的实数,我们规定符号表示中的较大值,如:,按照这个规定,方程的解为()A.2 B.C.或 D.2或10.如图,在平面直角坐标系中,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是()A.(5,2) B.(2,4) C.(1,4) D.(6,2)二、填空题(每小题3分,共24分)11.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=_____.12.如图,已知⊙O的半径为2,四边形ABCD是⊙O的内接四边形,∠ABC=∠AOC,且AD=CD,则图中阴影部分的面积等于______.13.如图,已知菱形的面积为,的长为,则的长为__________.14.如图,把小圆形场地的半径增加5米得到大圆形场地,场地面积扩大了一倍.则小圆形场地的半径是______米.15.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.16.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.17.再读教材:如图,钢球从斜面顶端静止开始沿斜面滚下,速度每秒增加1.5m/s,在这个问题中,距离=平均速度时间t,,其中是开始时的速度,是t秒时的速度.如果斜面的长是18m,钢球从斜面顶端滚到底端的时间为________s.18.如图,在中,点是边的中点,⊙经过、、三点,交于点,是⊙的直径,是上的一个点,且,则___________.三、解答题(共66分)19.(10分)在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A地步行到B地后按原路返回,队伍乙由A地步行经B地继续前行到C地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x(分钟),甲、乙两支队伍距B地的距离为y1(千米)和y2(千米).(甲、乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x之间的函数关系,请你结合所给的信息回答下列问题:(1)A、B两地之间的距离为千米,B、C两地之间的距离为千米;(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式;(3)请你直接写出点P的实际意义.20.(6分)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.21.(6分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C;D();②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为;(结果保留π)④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.22.(8分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.23.(8分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.24.(8分)如图,在平面直角坐标系中,已知抛物线与轴交于、两点,与轴交于点,其顶点为点,点的坐标为(0,-1),该抛物线与交于另一点,连接.(1)求该抛物线的解析式,并用配方法把解析式化为的形式;(2)若点在上,连接,求的面积;(3)一动点从点出发,以每秒1个单位的速度沿平行于轴方向向上运动,连接,,设运动时间为秒(>0),在点的运动过程中,当为何值时,?25.(10分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.26.(10分)如图,在中,,,.将绕点逆时针方向旋转60°得到,连接,求线段的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】直接把点代入反比例函数解析式即可得出k的值.【详解】∵反比例函数的图象经过点,
∴,解得:.
故选:B.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、A【分析】连接AC,如图,根据圆周角定理得到,,然后利用互余计算的度数.【详解】连接AC,如图,∵BC是的直径,∴,∵,∴.故答案为.故选A.【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.3、B【分析】分别根据正比例函数、反比例函数、一次函数和二次函数的性质逐项判断即得答案.【详解】解:A、,当时,函数是随着增大而增大,故本选项错误;B、,当时,函数是随着增大而减小,故本选项正确;C、,∴当时,函数是y随着增大而增大,故本选项错误;D、函数,当时,随着增大而减小,当时,随着增大而增大,故本选项错误.故选:B.【点睛】本题考查了初中阶段三类常见函数的性质,属于基础题型,熟练掌握一次函数、反比例函数和二次函数的性质是解题的关键.4、B【分析】根据根与系数的关系得出方程的两根之和为,即可得出选项.【详解】解:方程x2﹣6x+5=0的两个根之和为6,故选:B.【点睛】本题考查了根与系数的关系,解决问题的关键是熟练正确理解题意,熟练掌握一元二次方程根与系数的关系.5、C【解析】试题分析:设黄球的个数为x个,根据题意得:=,解得:x=1,经检验:x=1是原分式方程的解;∴黄球的个数为1.故选C.考点:概率公式.6、B【解析】∵扇形的圆心角为120°,半径为6cm,∴根据扇形的弧长公式,侧面展开后所得扇形的弧长为∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得,解得r=2cm.故选B.考点:圆锥和扇形的计算.7、C【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
所以掷一枚质地均匀的硬币10次,
可能有7次正面向上;
故选:C.【点睛】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.8、B【分析】连接BO,过B点和C点分别作y轴的垂线段BE和CD,证明△BEP≌△CDP(AAS),则△BEP面积=△CDP面积;易知△BOE面积=×8=2,△COD面积=|k|.由此可得△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|=12,解k即可,注意k<1.【详解】连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在双曲线上,所以△BOE面积=×8=2.∵点C在双曲线上,且从图象得出k<1,∴△COD面积=|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=2+|k|.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(2+|k|),∴2(3+|k|)=12,解得k=±3,因为k<1,所以k=-3.故选:B.【点睛】本题主要考查了反比例函数k的几何意义、平行四边形的面积,解决这类问题,要熟知反比例函数图象上点到y轴的垂线段与此点与原点的连线组成的三角形面积是|k|.9、D【分析】分两种情况讨论:①,②,根据题意得出方程求解即可.【详解】有意义,则①当,即时,由题意得,去分母整理得,解得经检验,是分式方程的解,符合题意;②当,即时,由题意得,去分母整理得,解得,,经检验,,是分式方程的解,但,∴取综上所述,方程的解为2或,故选:D.【点睛】本题考查了新型定义下的分式方程与解一元二次方程,理解题意,进行分类讨论是解题的关键.10、D【分析】根据切线的判定在网格中作图即可得结论.【详解】解:如图,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是(6,2).故选:D.【点睛】本题考查了切线的判定,掌握切线的判定定理是解题的关键.二、填空题(每小题3分,共24分)11、.【分析】根据直角三角形的性质解答即可.【详解】∵旗杆高AB=8m,旗杆影子长BC=16m,∴tanC===,故答案为【点睛】此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.12、π﹣【分析】根据题意可以得出三角形ACD是等边三角形,进而求出∠AOD,再根据直角三角形求出OE、AD,从而从扇形的面积减去三角形AOD的面积即可得出阴影部分的面积.【详解】解:连接AC,OD,过点O作OE⊥AD,垂足为E,∵∠ABC=∠AOC,∠AOC=2∠ADC,∠ABC+∠ADC=180°,∴∠ABC=120°,∠ADC=60°,∵AD=CD,∴△ACD是正三角形,∴∠AOD=120°,OE=2×cos60°=1,AD=2×sin60°×2=2,∴S阴影部分=S扇形OAD﹣S△AOD=×π×22﹣×2×1=π﹣,故答案为:π﹣.【点睛】本题主要考察扇形的面积和三角形的面积,熟练掌握面积公式及计算法则是解题关键.13、3【分析】根据菱形面积公式求得.【详解】解:【点睛】本题主要考查了菱形的对角线互相垂直,菱形的面积公式.14、【分析】根据等量关系“大圆的面积=2×小圆的面积”可以列出方程.【详解】设小圆的半径为xm,则大圆的半径为(x+5)m,根据题意得:π(x+5)2=2πx2,解得,x=5+5或x=5-5(不合题意,舍去).故答案为5+5.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.15、2【分析】作DG⊥BC于G,则DG=AC=6,CG=AD=4,由平行线得出△ADF∽△BEF,得出==2,求出BE=AD=2,由平行线的性质和三角函数定义求出AB=C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【详解】解:作DG⊥BC于G,则DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴==2,∴BE=AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC==sin∠DAB=,∴AB=AC=×6=10,∴BC==8,∴EG=BC﹣BE﹣CG=8﹣2﹣4=2,∴DE===2;故答案为:2.【点睛】本题考查了相似三角形的判定与性质、平行线的性质以及解直角三角形等知识;证明三角形相似是解题的关键.16、(6,6).【分析】利用位似变换的概念和相似三角形的性质进行解答即可.【详解】解:∵正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,∴,即解得,OD=6,OF=6,则点E的坐标为(6,6),故答案为:(6,6).【点睛】本题考查了相似三角形、正方形的性质以及位似变换的概念,掌握位似和相似的区别与联系是解答本题的关键.17、【分析】根据题意求得钢球到达斜面低端的速度是1.5t.然后由“平均速度时间t”列出关系式,再把s=18代入函数关系式即可求得相应的t的值.【详解】依题意得s=×t=t2,把s=18代入,得18=t2,解得t=,或t=-(舍去).故答案为【点睛】本题考查了一元二次方程的应用,根据实际问题列出二次函数关系式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.18、1【分析】根据题意得到△BDC是等腰三角形,外角和定理可得∠ADC也就是要求的∠AFC.【详解】连接DE,∵CD是⊙的直径,∴∠DEC=90°,DE⊥BC,∵E是BC的中点,∴DE是BC的垂直平分线,则BD=CD,∴∠DCE=∠B=24°,∴∠ADC=∠DCE+∠B=1°,∴∠AFC=∠ADC=1°,故填:1.【点睛】本题考查了线段垂直平分线的性质、外角和定理、同弧所对的圆周角相等,综合性较强,是中考填空题、选择题的常见题型.三、解答题(共66分)19、(1)2;1;(2)线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60);(3)点P的意义为:当x=分钟时,甲乙距B地都为千米.【分析】(1)当x=0时,y的值即为A、B两地间的距离,观察队伍乙的运动图象可知线段MN段为队伍乙从B地到C地段的函数图象,由此可得出B、C两地间的距离;(2)根据队伍乙的运动为匀速运动可根据路程比等于时间比来求出点M的坐标,设直线MN的解析式为y=kx+b(k≠0),再由M、N点的坐标利用待定系数法求出线段MN的解析式;(3)设队伍甲从A地到B地运动过程中离B地距离y与运动时间x之间的函数解析式为y=mx+n(m≠0),由点(0,2)、(60,0)利用待定系数法即可求出m、n的值,再令x﹣2=﹣x+2,求出交点P的坐标,结合坐标系中点的坐标意义即可解决问题.【详解】解:(1)当x=0时,y=2,∴A、B两地之间的距离为2千米;观察队伍乙的运动图象可知,B、C两地之间的距离为1千米.故答案为2;1.(2)乙队伍60分钟走6千米,走2千米用时60÷6×2=20分钟,∴M(20,0),N(60,1),设直线MN的解析式为y=kx+b(k≠0),则有,解得:.∴线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60).(3)设队伍甲从A地到B地运动过程中离B地距离y与运动时间x之间的函数解析式为y=mx+n(m≠0),则点(0,2)、(60,0)在该函数图象上,∴有,解得:.∴当0≤x≤60时,队伍甲的运动函数解析式为y=﹣x+2.令x﹣2=﹣x+2,解得:x=,将x=代入到y=﹣x+2中得:y=.∴点P的意义为:当x=分钟时,甲乙距B地都为千米.考点:一次函数的应用.20、(1)作图见试题解析;(2)作图见试题解析.【解析】试题分析:(1)过点C作直径CD,由于AC=BC,弧AC=弧BC,根据垂径定理的推理得CD垂直平分AB,所以CD将△ABC分成面积相等的两部分;(2)连结PO并延长交BC于E,过点A、E作弦AD,由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.21、(1)①答案见解析;②答案见解析;(2)①C(6,2);D(2,0);②;③;④相切,理由见解析.【分析】(1)①按题目的要求作图即可②根据圆心到A、B、C距离相等即可得出D点位置;(2)①C(6,2),弦AB,BC的垂直平分线的交点得出D(2,0);
②OA,OD长已知,△OAD中勾股定理求出⊙D的半径=2;
③求出∠ADC的度数,得弧ADC的周长,求出圆锥的底面半径,再求圆锥的底面的面积;
④△CDE中根据勾股定理的逆定理得∠DCE=90°,直线EC与⊙D相切.【详解】(1)①②如图所示:(2)①故答案为:C(6,2);D(2,0);②⊙D的半径=;故答案为:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长=圆锥的底面的半径=,圆锥的底面的面积为π()2=;故答案为:;
(4)直线EC与⊙D相切.
证明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直线EC与⊙D相切.【点睛】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,圆的圆心D是关键.22、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根据一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【详解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.23、(1),顶点坐标为;(2)8;(3)①;②.【分析】(1)将点C代入表达式即可求出解析式,将表达式转换为顶点式即可写出顶点坐标;(2)根据题目分析可知,当点P位于抛物线顶点时,△ABP面积最大,根据解析式求出A、B坐标,从而得到AB长,再利用三角形面积公式计算面积即可;(3)①分三种情况:0<m≤1、1<m≤2以及m>2时,分别进行计算即可;②将h=9代入①中的表达式分别计算判断即可.【详解】解:(1)将点代入,得,解得,∴,∵,∴抛物线的顶点坐标为;(2)令,解得或,∴,,∴,当点与抛物线顶点重合时,△ABP的面积最大,此时;(3)①∵点C(0,-3)关于对称轴x=1对称的点的坐标为(2,-3),P(m,),∴当时,,当时,,当时,,综上所述,;②当h=9时,若,此时方程无解,若,解得m=4或m=-2(不合题意,舍去),∴P(4,5).【点睛】本题为二次函数综合题,需熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题关键.24、(1);(2);(3)【解析】(1)将A,B两点的坐标代入抛物线解析式中,得到关于a,b的方程组,解之求得a,b的值,即得解析式,并化为顶点式即可;(2)过点A作AH∥y轴交BC于H,BE于G,求出直线BC,BE的解析式,继而可以求得G、H点的坐标,进一步求出GH,联立BE与抛物线方程求出点F的坐标,然后根据三角形面积公式求出△FHB的面积;(3)设点M坐标为(2,m),由题意知△OMB是直角三角形,进而利用勾股定理建立关于m的方程,求出点M的坐标,从而求出MD,最后求出时间t.【详解】(1)∵抛物线与轴交于A(1,0),B(3,0)两点,∴∴∴抛物线解析式为.(2)如图1,
过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,-2),∵B(3,0),∴直线BC解析式为y=x-2,∵H(1,y)在直线BC上,∴y=-,∴H(1,-),∵B(3,0),E(0,-1),∴直线BE解析式为y=-x-1,∴G(1,-),∴GH=,∵直线BE:y=-x-1与抛物线y=-x2+x-2相较于F,B,∴F(,-),∴S△FHB=GH×|xG-xF|+GH×|xB-xG|=GH×|xB-xF|=××(3-)=.(3)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河源市中石油2025秋招笔试模拟题含答案安全环保与HSE岗
- 洛阳市中石油2025秋招笔试模拟题含答案新材料与新能源岗
- 阿克苏市中石油2025秋招面试半结构化模拟题及答案机械与动力工程岗
- 中国广电哈密市2025秋招写作案例分析万能模板直接套用
- 遵义市中石油2025秋招面试半结构化模拟题及答案机械与动力工程岗
- 中国广电兰州市2025秋招财务审计类专业追问清单及参考回答
- 2025年内科护士考试试题及答案
- 2025年数控师傅考试题及答案
- 中国联通海北藏族自治州2025秋招综合管理类专业追问清单及参考回答
- 中国广电牡丹江市2025秋招企业文化50题速记
- 2025年国家工作人员学法用法题库(含答案)
- 中秋国庆节假期安全教育安全防范不松懈宣传课件模板
- 八年级语文写作技巧与课堂教案
- 鼻出血的课件护理
- 2025年干细胞治疗行业研究报告及未来行业发展趋势预测
- (2025年标准)清理乱账服务协议书
- 2025年4月自考00155中级财务会计试题及答案含评分标准
- 道路工程培训课件
- DGTJ08-2004B-2020 建筑太阳能光伏发电应用技术标准
- 国庆假期大学生安全教育
- 呼吸内科出科汇报
评论
0/150
提交评论