




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省安顺市平坝第一高级中学高二数学第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的零点个数为()A.0 B.1 C.2 D.32.已知函数,若只有一个极值点,则实数的取值范围是A. B. C. D.3.函数的值域是A. B. C. D.4.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为()A.90 B.60 C.120 D.1105.已知函数在上恒不大于0,则的最大值为()A. B. C.0 D.16.已知抛物线,过其焦点的直线交抛物线于两点,若,则的面积(为坐标原点)为()A. B. C. D.7.在平面直角坐标系中,,,,,若,,则的最小值是()A.B.C.D.8.在同一平面直角坐标系中,曲线按变换后的曲线的焦点坐标为()A. B. C. D.9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有()A.210种 B.420种 C.630种 D.840种10.的展开式的中间项为()A.24 B.-8 C. D.11.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A. B. C. D.12.已知数列的前n项和为,满足,,若,则m的最小值为()A.6 B.7 C.8 D.9二、填空题:本题共4小题,每小题5分,共20分。13.在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是____.①存在点,使得平面平面;②存在点,使得平面;③的面积不可能等于;④若分别是在平面与平面的正投影的面积,则存在点,使得.14.已知随机变量的分布表如下所示,则实数的值为______.15.若展开式的各二项式系数和为16,则展开式中奇数项的系数和为______.16.数列的通项公式是,若前项和为20,则项数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面真角坐标系xOy中,曲线的参数方程为(t为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线与曲线交于M,N两点,直线OM和ON的斜率分别为和,求的值.18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,19.(12分)已知抛物线的焦点与双曲线的右焦点重合.(1)求抛物线的方程及焦点到准线的距离;(2)若直线与交于两点,求的值.20.(12分)(本小题满分12分)在等比数列中,.(1)求;(2)设,求数列的前项和.21.(12分)己知集合,(1)若,求实数a的取值范围;(2)若,求实数a的取值范围.22.(10分)如图,在三棱柱中,底面,,,,点,分别为与的中点.(1)证明:平面.(2)求与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】,如图,由图可知,两个图象有2个交点,所以原函数的零点个数为2个,故选C.2、C【解题分析】
由,令,解得或,令,利用导数研究其单调性、极值,得出结论.【题目详解】,令,解得或,令,可得,当时,函数取得极小值,,所以当时,令,解得,此时函数只有一个极值点,当时,此时函数只有一个极值点1,满足题意,当时不满足条件,舍去.综上可得实数的取值范围是,故选C.【题目点拨】本题主要考查了利用导数研究函数的单调性与极值、方程与不等式的解法、分类讨论思想,属于难题.3、A【解题分析】分析:由于函数在上是减函数,且,利用单调性求得函数的值域详解:函数在上是减函数,且,当时,函数取得最小值为当时,函数取得最大值为故函数的值域为故选点睛:本题主要考查的是指数函数的单调性,求函数的值域,较为基础。4、D【解题分析】
用所有的选法共有减去没有任何一名女生入选的组队方案数,即得结果【题目详解】所有的选法共有种其中没有任何一名女生入选的组队方案数为:故至少有一名女生入选的组队方案数为故选【题目点拨】本题主要考的是排列,组合及简单计数问题,考查组合的运用,处理“至少有一名”类问题,宜选用间接法,是一道基础题。5、A【解题分析】
先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【题目详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即.设,则.因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.【题目点拨】本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.6、B【解题分析】
首先过作,过作(为准线),,易得,.根据直线:与抛物线联立得到,根据焦点弦性质得到,结合已知即可得到,再计算即可.【题目详解】如图所示:过作,过作(为准线),.因为,设,则,.所以.在中,,所以.则.,直线为.,.所以,.在中,.所以.故选:B【题目点拨】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.7、A【解题分析】试题分析:设P(x,y),则,,所以,所以P点轨迹为,根据条件,可以整理得到:,所以M,Q,N三点共线,即Q点在直线MN上,由M(8,0),N(0,8)可知Q点在直线上运动,所以的最小值问题转化为圆上点到直线的最小距离,即圆心到直线的距离减去圆的半径,。考点:1.平面向量的应用;2.直线与圆的位置关系。8、D【解题分析】
把伸缩变换的式子变为用表示,再代入原方程即可求出结果.【题目详解】由可得,将其代入可得:,即故其焦点为:.故选:D.【题目点拨】本题考查的是有关伸缩变换后曲线方程的求解问题,涉及到的知识点有伸缩变换规律对应点的坐标之间的关系,属于基础题9、B【解题分析】依题意可得,3位实习教师中可能是一男两女或两男一女.若是一男两女,则有种选派方案,若是两男一女,则有种选派方案.所以总共有种不同选派方案,故选B10、C【解题分析】
由二项式展开式通项公式,再由展开式的中间项为展开式的第3项,代入求解即可.【题目详解】解:的展开式的中间项为展开式的第3项,即,故选:C.【题目点拨】本题考查了二项式展开式的通项公式,重点考查了展开式的中间项,属基础题.11、B【解题分析】设正方形边长为,则圆的半径为,正方形的面积为,圆的面积为.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算.12、C【解题分析】
根据an=sn﹣sn﹣1可以求出{an}的通项公式,再利用裂项相消法求出sm,最后根据已知,解出m即可.【题目详解】由已知可得,,,,(n≥2),1,即,解之得,或7.5,故选:C.【题目点拨】本题考查前n项和求通项公式以及裂项相消法求和,考查了分式不等式的解法,属于中等难度.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解题分析】
逐项分析.【题目详解】①如图当是中点时,可知也是中点且,,,所以平面,所以,同理可知,且,所以平面,又平面,所以平面平面,故正确;②如图取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,则为中点,又为中点,所以,且,,,所以平面平面,且平面,所以平面,故正确;③如图作,在中根据等面积得:,根据对称性可知:,又,所以是等腰三角形,则,故错误;④如图设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.故填:①②④.【题目点拨】本题考查立体几何的综合问题,难度较难.对于判断是否存在满足垂直或者平行的位置关系,可通过对特殊位置进行分析得到结论,一般优先考虑中点、三等分点;同时计算线段上动点是否满足一些情况时,可以设动点和线段某一端点组成的线段与整个线段长度的比值为,然后统一未知数去分析问题.14、【解题分析】
利用分布列的性质,概率之和为,列方程解出实数的值.【题目详解】由分布列的性质,概率之和为,可得,化简得.,因此,,故答案为.【题目点拨】本题考查分布列的基本性质,解题时要充分利用概率之和为来进行求解,考查运算求解能力,属于中等题.15、353【解题分析】分析:由题意可得,由此解得,分别令和,两式相加求得结果.详解:由题意可得,由此解得,即则令得令得,两式相加可得展开式中奇数项的系数和为即答案为353.点睛:本题主要考查二项式定理,二项展开式的通项公式,求展开式中奇数项的系数和,解题时注意赋值法的应用,属于中档题.16、440【解题分析】
由数列的通项公式可得:,则:,结合前n项和的结果有:,解得:.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)1【解题分析】
(1)消去t即可得的普通方程,通过移项和可得的普通方程;(2)由可得的几何意义是斜率,将的参数方程代入的普通方程,得到关于t的方程且,由韦达定理可得.【题目详解】解:(1).由,(t为参数),消去参数t,得,即的普通方程为,由,得,即,将代入,得,即的直角坐标方程为.(2).由(t为参数),得,则的几何意义是抛物线上的点(原点除外)与原点连线的斜率.由题意知,将,(t为参数)代入,得.由,且得,且.设M,N对应的参数分别为、,则,,所以.【题目点拨】本题考查参数方程,极坐标方程化为普通方程和参数方程在几何问题中的应用.18、(1)第二种生产方式的效率更高.理由见解析(2)80(3)能【解题分析】
分析:(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出,再与6.635比较可得结果.详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过第一种生产方式155第二种生产方式515(3)由于,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.19、(1),4;(2)16.【解题分析】
(1)求得双曲线的右焦点,可得抛物线的焦点,则方程以及焦准距可求;(2)联立抛物线方程和直线方程,运用韦达定理,可得所求.【题目详解】(1)双曲线的右焦点的坐标为,则,即,所以抛物线C的方程为,焦点到准线的距离为4.(2)联立,得,因为,所以.【题目点拨】本题考查双曲线的方程和抛物线的方程和性质,考查直线和抛物线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年农业系统职称考试考前冲刺练习题及答案详解(历年真题)
- 2025年美容美发店长面试预测题与经营策略
- 2025年机关单位招聘面试热点解析及模拟题集
- 2026届四川省宜宾市六中高高一化学第一学期期中质量检测模拟试题含解析
- 2025年本科院校基建处招聘考试备考指南与模拟题
- 公务员面试题及答案解读
- 2025年快递行业职业技能鉴定高级模拟题集
- 2025年数据分析师技能进阶教程与模拟题解析
- 2025年内科学专业知识初级考试题库及答案详解
- 2025年农业智能装备应用与管理人才选拔考试指南及解析
- 【中信建投】信息技术-人工智能行业AI产品深度拆解(系列1)-可灵:头部AI视频产品
- 广西桉树造林技术改进及病虫害防治措施深入研究
- 经皮肾术后护理试题及答案
- 水电站优化调度培训课件
- 2024年内科护理学(第七版)期末考试复习题库(含答案)
- 2025过敏性休克抢救指南
- 信息系统监理师(中级)考试题库(含答案)
- 公务用车管理办法解读
- 线路迁改工程施工方案
- 《西方艺术史》课程教学大纲
- 中华人民共和国建筑法
评论
0/150
提交评论