




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北省邯郸市鸡泽县第一中学数学高二下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是()A. B. C. D.2.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A.身高在左右 B.身高一定是C.身高在以上 D.身高在以下3.下图是一个算法流程图,则输出的x值为A.95 B.47 C.23 D.114.已知非零向量满足,且,则与的夹角为A. B. C. D.5.已知,分别为双曲线:的左,右焦点,点是右支上一点,若,且,则的离心率为()A. B.4 C.5 D.6.通过随机询问111名性别不同的中学生是否爱好运动,得到如下的列联表:男女总计爱好412131不爱好212151总计3151111由得,1.1511.1111.1112.8413.32511.828参照附表,得到的正确结论是()A.在犯错误的概率不超过1.111的前提下,认为“爱好运动与性别有关”B.在犯错误的概率不超过1.11的前提下,认为“爱好运动与性别有关”C.在犯错误的概率不超过1.111的前提下,认为“爱好运动与性别无关”D.有以上的把握认为“爱好运动与性别无关”7.已知随机变量的分布如下表所示,则等于()A.0 B.-0.2 C.-1 D.-0.38.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23A.2027B.49C.89.已知函数,则等于()A.-1 B.0 C.1 D.10.若,则()A. B. C. D.11.的二项式系数之和为().A. B. C. D.12.双曲线x2A.23 B.2 C.3 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)=_____.14.在中,,,分别是角,,所对的边,且,则的最大值为_________.15.双曲线上一点到点的距离为9,则点到点的距离______.16.已知全集,集合,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在锐角中,内角,,的对边分别为,,,且.(1)求角的大小;(2)若,,求的面积.18.(12分)已知椭圆C:x2a2+y2(1)求椭圆C的标准方程;(2)设M为椭圆C的右顶点,过点N(6,0)且斜率不为0的直线l与椭圆C相交于P,Q两点,记直线PM,QM的斜率分别为k1,k2,求证:19.(12分)设,且.(1)求的值;(2)求在区间上的最大值.20.(12分)在平面直角坐标系中,已知,动点满足,记动点的轨迹为.(1)求的方程;(2)若直线与交于两点,且,求的值.21.(12分)椭圆C:x2a2+y2(1)求椭圆C的方程(2)过F1作不垂直x轴的直线交椭圆于A,B两点弦AB的垂直平分线交x轴于M点,求证:AB22.(10分)如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且PG=4,AG=13GD,BG⊥GC,GB=GC=2,E(1)求异面直线GE与PC所成的角的余弦值;(2)求点D到平面PBG的距离;(3)若F点是棱PC上一点,且DF⊥GC,求PFFC
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据乘法原理得到答案.【题目详解】5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是答案为D【题目点拨】本题考查了乘法原理,属于简单题.2、A【解题分析】
由线性回归方程的意义得解.【题目详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【题目点拨】本题考查线性回归方程的意义,属于基础题.3、B【解题分析】运行程序,,判断是,,,判断是,,判断是,,判断是,,判断否,输出.4、B【解题分析】
本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【题目详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【题目点拨】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.5、C【解题分析】
在中,求出,,然后利用双曲线的定义列式求解.【题目详解】在中,因为,所以,,,则由双曲线的定义可得所以离心率,故选C.【题目点拨】本题考查双曲线的定义和离心率,解题的关键是求出,,属于一般题.6、B【解题分析】
试题分析:根据列联表数据得到7.8,发现它大于3.325,得到有99%以上的把握认为“爱好这项运动与性别有关”,从而可得结论.解:∵7.8>3.325,∴有1.11=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选B.点评:本题考查独立性检验的应用,考查利用临界值,进行判断,是一个基础题7、B【解题分析】
先根据题目条件求出值,再由离散型随机变量的期望公式得到答案。【题目详解】由题可得得,则由离散型随机变量的期望公式得故选B【题目点拨】本题考查离散型随机变量的分布列和期望公式,属于一般题。8、A【解题分析】试题分析:“甲队获胜”包括两种情况,一是2:0获胜,二是2:1获胜.根据题意若是甲队2:0获胜,则比赛只有2局,其概率为(23)2=49;若是甲队2:1获胜,则比赛3局,其中第3考点:相互独立事件的概率及n次独立重复试验.【方法点晴】本题主要考查了相互独立事件的概率及n次独立重复试验,属于中档题.本题解答的关键是读懂比赛的规则,尤其是根据“采用三局两胜制比赛,即先胜两局者获胜且比赛结束”把整个比赛所有的可能情况分成两类,甲队以2:0获胜或2:1获胜,据此分析整个比赛过程中的每一局的比赛结果,根据相互独立事件的概率乘法公式及n次独立重复试验概率公式求得每种情况的概率再由互斥事件的概率加法公式求得答案.9、B【解题分析】
先求,再求.【题目详解】由已知,得:所以故选:B【题目点拨】本题考查了分段函数求值,属于基础题.10、D【解题分析】
由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【题目详解】∵∴0<n<1,0<m<1且即lg0.5()>0⇔lg0.5()>0∵lg0.5<0,lgm<0,lgn<0∴lgn﹣lgm<0即lgn<lgm⇔n<m∴1>m>n>0故选D.【题目点拨】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法11、B【解题分析】由题意得二项式系数和为.选.12、A【解题分析】试题分析:双曲线焦点到渐近线的距离为b,所以距离为b=23考点:双曲线与渐近线.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据所给的随机变量的分布列,写出各个变量对应的概率,根据分布列中各个概率之和是1,把所有的概率表示出来相加等于1,得到关于a的方程,解方程求得a的值,最后求出P(X=2).详解:∵P(X=i)=(i=1,2,3),∴a=3,∴P(X=2)=.故答案选:C.点睛:(1)本题主要考查分布列的性质,意在考查学生对这些知识的掌握水平.(2)分布列的两个性质:①Pi≥0,i=1,2,…;②P1+P2+…=1.14、【解题分析】
利用正弦定理边化角化简可求得,则有,则借助正弦函数图象和性质即可求出.【题目详解】因为,所以,所以.所以,因为,所以当时,取得最小值.故答案为:.【题目点拨】本题考查正弦定理,三角函数的图象和性质,属于常考题.15、或【解题分析】
先根据双曲线方程求出焦点坐标,再结合双曲线的定义可得到,进而可求出的值,得到答案.【题目详解】双曲线,,,,和为双曲线的两个焦点,点在双曲线上,,解或,,或,故答案为:或.【题目点拨】本题主要考查的是双曲线的定义,属于基础题.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据求解,注意对所求结果进行必要的验证,负数应该舍去,且所求距离应该不小于.16、【解题分析】
利用集合补集和交集的定义直接求解即可.【题目详解】因为全集,集合,,所以.故答案为:【题目点拨】本题考查了集合的补集、交集的定义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)直接由正弦定理可得,从而可得答案.
(2)由余弦定理可得,再由面积公式可求答案.【题目详解】解:(1)由,得,,∴,又因为为锐角三角形,∴.(2)由余弦定理可知,,即,解得,∴.【题目点拨】本题考查正弦定理和余弦定理的应用以及三角形的面积,属于基础题.18、(1)x2【解题分析】
(1)由题意可得e=ca=222ab=4【题目详解】(1)由题意有e=ca=222ab=42(2)由(1)可知M(2,0),依题意得直线l的斜率存在,设其方程为y=k(x-6)(k≠0),设Px1,y1,Q消去y并整理可得(1+2kx1+x2=k2【题目点拨】本题考查了椭圆的标准方程,考查了直线与椭圆的位置关系,考查了直线的斜率及韦达定理的应用,考查了学生的计算能力,属于中档题.19、(1);(2)2【解题分析】
(1)直接由求得的值;
(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域.【题目详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是.【题目点拨】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域.20、(1)(2)【解题分析】分析:(1)设点的坐标为,由平面向量数量积的坐标运算法则结合题意可得的方程为.(2)由(1)知为圆心是,半径是的圆,利用点到直线距离公式结合圆的弦长公式可得,解得.详解:(1)设点的坐标为,则,所以,即,所以的方程为.(2)由(1)知为圆心是,半径是的圆,设到直线的距离为,则,因为,所以,由点到直线的距离公式得,解得.点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.21、(1)x2【解题分析】分析:⑴由椭圆过点1,32⑵设直线方程,联立椭圆方程,利用根与系数之间的关系,算长度详解:(1)∴(2)y=k(x+1)x|AB|=yAB令|点睛:本题主要考查了解析几何中椭圆的定值问题,在解答此类问题时要设点坐标和直线方程,利用根与系数之间的关系即可求出长度表达式,然后再求定值,需要一定的计算量,理解方法并能运用,本题有一定的难度.22、(1)1010;(2)32;(3)【解题分析】
(1)以G点为原点,GB、GC、GP为x轴、(2)计算点到面的距离,需要先做出面的法向量,在法向量与点到面的一个点所成的向量之间的运算,得到结果。(3)设出点的坐标,根据两条线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DZ/T 0276.10-2015岩石物理力学性质试验规程第10部分:岩石膨胀性试验
- DZ/T 0101.8-1994地质仪器仪表制造时间定额冲压
- DZ/T 0006-1991地质勘查规程规范编写规定
- DZ 0004-1991重力调查技术规定(1∶50 000)
- CJ/T 109-2007潜水搅拌机
- 基础知识的软件评测师试题及答案
- 软件评测师考点深度解析试题及答案
- 多媒体设计师的职业生涯与行业发展方向试题及答案
- 系统分析师考试综合模拟试题及答案
- 关键环节对初级社会工作者考试试题及答案的影响
- 装修公司合同保密协议书
- 2025-2030中国公路建设行业发展分析及发展前景与趋势预测研究报告
- 2025购销茶叶合同范本
- 户外场地安全课件
- 研究我国平台企业在社会责任履行及其治理机制的现状与问题
- 叉车使用安全协议书
- ai训练师面试题及答案
- 安全管理:承包商安全管理制度(模板)
- 2025年湖北省新华书店(集团)有限公司招聘笔试参考题库附带答案详解
- 2025年宣城郎溪开创控股集团有限公司下属子公司招聘12人笔试参考题库附带答案详解
- 陕09J01 建筑用料及做法图集
评论
0/150
提交评论