版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安市南安一中2024届高二数学第二学期期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的函数的图象关于对称,且当时,单调递增,若,则的大小关系是A. B. C. D.2.已知x,y满足不等式组则z="2x"+y的最大值与最小值的比值为A. B. C. D.23.若复数,则复数在复平面内的对应点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数f(x)=(2x-1)ex+ax2-3a(A.[-2e,+∞) B.-325.已知复数是纯虚数,,则()A. B. C. D.6.在复平面内,复数的共轭复数对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限7.设随机变量服从正态分布,若,则
=A. B. C. D.8.随机变量的分布列为12340.20.30.4则()A.4.8 B.5 C.6 D.8.49.设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则实数a的值为A.5 B.3 C.53 D.10.已知一段演绎推理:“因为指数函数是增函数,而是指数函数,所以是增函数”,则这段推理的()A.大前提错误 B.小前提错误 C.结论正确 D.推理形式错误11.某商场要从某品牌手机a、b、c、d、e五种型号中,选出三种型号的手机进行促销活动,则在型号a被选中的条件下,型号b也被选中的概率是()A. B. C. D.12.已知,若的展开式中各项系数之和为,则展开式中常数项为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,满足如下条件:①第行首尾两数均为;②表中的递推关系类似“杨辉三角”.则第行的第2个数是__________.14.某四棱锥的三视图如图所示,那么该四棱锥的体积为____.15.设,.已知矩阵,其中,,那么B=________.16.已知点在椭圆上,垂直于椭圆焦点所在的直线,垂足为,并且为线段的中点,则点的轨迹方程是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线的参数方程和极坐标方程;(Ⅱ)设直线与曲线相交于两点,求的值.18.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)若直线与曲线交于、两点,求的最小值.20.(12分)解关于x的不等式ax2+ax-1>x21.(12分)已知点是椭圆的一个焦点,点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于不同的两点,且(为坐标原点),求直线斜率的取值范围.22.(10分)(1)化简求值:(2)化简求值:+
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:由题意可得函数为偶函数,再根据函数的单调性,以及指数函数和对数函数的性质比较即可得到结果详解:定义在上的函数的图象关于对称,函数的图象关于轴对称即函数为偶函数,,当时,单调递增故选点睛:本题利用函数的奇偶性和单调性判断函数值的大小,根据单调性的概念,只要判定输入值的大小即可判断函数值的大小。2、D【解题分析】
解:因为x,y满足不等式组,作出可行域,然后判定当过点(2,2)取得最大,过点(1,1)取得最小,比值为2,选D3、B【解题分析】
把复数为标准形式,写出对应点的坐标.【题目详解】,对应点,在第二象限.故选B.【题目点拨】本题考查复数的几何意义,属于基础题.4、A【解题分析】
把函数f(x)为增函数,转化为f'(x)≥0在(0,+∞)上恒成立,得到a≥-(2x+1)ex2x【题目详解】由题意,函数f(x)=(2x-1)e则f'(x)=2ex+(2x-1)设g(x)=则g令g'(x)>0,得到0<x<12,则函数g(x)在0,1即a的取值范围是[-2e故选A.【题目点拨】本题主要考查了利用函数的单调性与极值(最值)求解参数问题,其中解答中根据函数的单调性,得到a≥-(2x+1)e5、B【解题分析】
根据纯虚数定义,可求得的值;代入后可得复数,再根据复数的除法运算即可求得的值.【题目详解】复数是纯虚数,则,解得,所以,则,故选:B.【题目点拨】本题考查了复数的概念,复数的除法运算,属于基础题.6、D【解题分析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.7、B【解题分析】分析:根据正态分布图像可知,故它们中点即为对称轴.详解:由题可得:,故对称轴为故选B.点睛:考查正态分布的基本量和图像性质,属于基础题.8、B【解题分析】分析:先求出a,再求,再利用公式求.详解:由题得a=1-0.2-0.3-0.4=0.1.由题得.所以所以.故答案为:B.点睛:(1)本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)若(a、b是常数),是随机变量,则也是随机变量,.9、D【解题分析】
根据正态分布的特征,可得2a-3+a+2=6,求解即可得出结果.【题目详解】因为随机变量ξ服从正态分布N3,4,P根据正态分布的特征,可得2a-3+a+2=6,解得a=7故选D【题目点拨】本题主要考查正态分布的特征,熟记正态分布的特征即可,属于基础题型.10、A【解题分析】
分析该演绎推理的大前提、小前提和结论,结合指数函数的图象和性质判断正误,可以得出正确的答案.【题目详解】该演绎推理的大前提是:指数函数是增函数,小前提是:是指数函数,结论是:是增函数.其中,大前提是错误的,因为时,函数是减函数,致使得出的结论错误.故选:A.【题目点拨】本题考查了演绎推理的应用问题,解题时应根据演绎推理的三段论是什么,进行逐一判定,得出正确的结论,是基础题.11、B【解题分析】
设事件表示“在型号被选中”,事件表示“型号被选中”,则,,由此利用条件概率能求出在型号被选中的条件下,型号也被选中的概率.【题目详解】解从、、、、5种型号中,选出3种型号的手机进行促销活动.设事件表示“在型号被选中”,事件表示“型号被选中”,,,∴在型号被选中的条件下,型号也被选中的概率:,故选:B.【题目点拨】本题考查条件概率的求法,考查运算求解能力,属于基础题.12、B【解题分析】
通过各项系数和为1,令可求出a值,于是可得答案.【题目详解】根据题意,在中,令,则,而,故,所以展开式中常数项为,故答案为B.【题目点拨】本题主要考查二项式定理,注意各项系数之和和二项式系数和之间的区别,意在考查学生的计算能力,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
归纳前几行的第二个数,发现,第行的第2个数可以用来表示,化简上式由此可以得到答案.【题目详解】由图表可知第行的第2个数为:.故答案为:.【题目点拨】本题是一道找规律的题目,考查归纳推理,掌握归纳推理找规律的方法是解题的关键.14、【解题分析】
先还原几何体,再根据四棱锥体积公式求结果.【题目详解】由三视图知该几何体如图,V==故答案为:【题目点拨】本题考查三视图以及四棱锥的体积,考查基本分析求解能力,属基础题.15、【解题分析】
根据条件列方程组,解得结果.【题目详解】由定义得,所以故答案为:【题目点拨】本题考查矩阵运算,考查基本分析求解能力,属基础题.16、【解题分析】设P(x,y),则M(x,).∵点M在椭圆上,∴,即P点的轨迹方程为x2+y2=1.故填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)直线的参数方程为(为参数)极坐标方程为()(Ⅱ)5【解题分析】
(Ⅰ)直线的普通方程为,可以确定直线过原点,且倾斜角为,这样可以直接写出参数方程和极坐标方程;(Ⅱ)利用,把曲线的参数方程化为普通方程,然后把直线的参数方程代入曲线的普通方程中,利用根与系数的关系和参数的意义,可以求出的值.【题目详解】解:(Ⅰ)直线的参数方程为(为参数)极坐标方程为()(Ⅱ)曲线的普通方程为将直线的参数方程代入曲线中,得,设点对应的参数分别是,则,【题目点拨】本题考查了直线的参数方程化为普通方程和极坐标方程问题,同时也考查了直线与圆的位置关系,以及直线参数方程的几何意义.18、(1)0.55(2)【解题分析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,因此其保费比基本保费高出的概率为.点睛:求概率时,对于条件中含有“在……的条件下,求……发生的概率”的问题,一般为条件概率,求解时可根据条件概率的定义或利用古典概型概率求解.19、(1),;(2)【解题分析】分析:(1)将参数方程利用代入法消去参数可得直线的普通方程,利用即可得曲线的直角坐标方程;(2)先证明直线过定点,点在圆的内部.当直线与线段垂直时,取得最小值,利用勾股定理可得结果..详解:(1)将(为参数,)消去参数,得直线,,即.将代入,得,即曲线的直角坐标方程为.(2)设直线的普通方程为,其中,又,∴,则直线过定点,∵圆的圆心,半径,,故点在圆的内部.当直线与线段垂直时,取得最小值,∴.点睛:本题考查参数方程和普通方程的转化、极坐标方程和直角坐标方程的转化以及勾股定理求圆的弦长,属于中档题.消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.20、见解析.【解题分析】分析:对a分五种情况讨论,分别利用一元一次不等式与一元二次不等式的解法求解即可.详解:①当a=0时,x<-1;②当a≠0时:1∘a>0,ax2故等式左边因式分解得:ax-1x+12∘当-1<a<0时,-ax+13∘当a=-1时,x4∘当a<-1时,-ax+1点睛:本题主要考查一元二次不等式的解法、分类讨论思想的应用.属于中档题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.21、(1)(2)【解题分析】
(1)由题可知,椭圆的另一个焦点为,利用椭圆的定义,求得,再理由椭圆中,求得的值,即可得到椭圆的方程;(2)设直线的方程为,联立方程组,利用根与系数的关系,求得,在由,进而可求解斜率的取值范围,得到答案。【题目详解】(1)由题可知,椭圆的另一个焦点为,所以点到两焦点的距离之和为.所以.又因为,所以,则椭圆的方程为.(2)当直线的斜率不存在时,结合椭圆的对称性可知,,不符合题意.故设直线的方程为,,,联立,可得.所以而,由,可得.所以,又因为,所以.综上,.【题目点拨】本题主要考查椭圆的定义及标准方程、直线与圆锥曲线的位置关系的应用问题,解答此类题目,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025上海航天设备制造总厂有限公司校招笔试历年参考题库附带答案详解
- 个人业务部以目标驱动工作计划及实施方法
- 攀岩指导员高级与相关机构如救援队的合作方案
- 生产计划与生产调度工作计划及安排
- 企业成功秘诀质量主管的核心工作计划
- 餐饮业客户经理的工作计划及客户关系管理
- 会议成功关键会务经理的工作计划要点
- IT项目安全施工技术方案
- 代理商加盟合同协议
- 88年劳动合同范本
- 2025年卫健委考试题库及答案
- 美食城管理办法
- 2025年黑龙江乐理试题及答案
- 食堂人员编制及岗位职责
- DB37∕T 4683-2023 非煤矿山企业安全管理信息化建设基本规范
- 体育教练培训课件
- JJF 2225-2025 高绝缘电阻测量仪(高阻计)校准规范
- 高血压疾病讲课件
- 财政直接支付管理制度
- D级压力容器质量管理体系内审资料符合TSG07-2019附录M
- 高中物理必修一知识点梳理和总结
评论
0/150
提交评论