版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省定远县第二中学高二数学第二学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.2.将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A. B. C. D.3.(2017新课标全国I理科)记为等差数列的前项和.若,,则的公差为A.1 B.2C.4 D.84.设,则()A. B. C. D.5.已知函数(其中,)在区间上单调递减,则实数的取值范围是()A. B. C. D.6.随机变量服从正态分布,若,,则()A.3 B.4 C.5 D.67.设平面向量,则与垂直的向量可以是()A. B. C. D.8.将4名学生分配到5间宿舍中的任意2间住宿,每间宿舍2人,则不同的分配方法有()A.240种 B.120种 C.90种 D.60种9.在区间上随机选取一个实数,则事件的概率为()A. B. C. D.10.已知一系列样本点…的回归直线方程为若样本点与的残差相同,则有()A. B. C. D.11.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为()A. B. C. D.12.若偶函数在上单调递减,,,,则、、满足()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.观察下列数表:如此继续下去,则此表最后一行的数为_______(用数字作答).14.已知f(x)是奇函数,且当x∈(0,2)时,f(x)=lnx-ax(),当x∈(-2,0)时,f(x)的最小值是1,则a=__________.15.类比初中平面几何中“面积法”求三角形内切圆半径的方法,可以求得棱长为的正四面体的内切球半径为__________.16.已知∈R,设命题P:;命题Q:函数只有一个零点.则使“PQ”为假命题的实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,为右焦点,圆,为椭圆上一点,且位于第一象限,过点作与圆相切于点,使得点,在的两侧.(Ⅰ)求椭圆的焦距及离心率;(Ⅱ)求四边形面积的最大值.18.(12分)已知(1)若,且为真,求实数的取值范围;(2)若是充分不必要条件,求实数的取值范围19.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值及此时的直角坐标.21.(12分)已知函数.(1)求函数的单调递增区间;(2)求函数在上的最大值和最小值.22.(10分)设椭圆经过点,其离心率.(1)求椭圆的方程;(2)直线与椭圆交于、两点,且的面积为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
将椭圆方程化为标准方程,根据题中条件列出关于的不等式,解出该不等式可得出实数的取值范围.【题目详解】椭圆的标准方程为,由于该方程表示焦点在轴上的椭圆,则,解得,因此,实数的取值范围是,故选A.【题目点拨】本题考查椭圆的标准方程,考查根据方程判断出焦点的位置,解题时要将椭圆方程化为标准形式,结合条件列出不等式进行求解,考查运算求解能力,属于中等题.2、C【解题分析】
将A,B,C三个字捆在一起,利用捆绑法得到答案.【题目详解】由捆绑法可得所求概率为.故答案为C【题目点拨】本题考查了概率的计算,利用捆绑法可以简化运算.3、C【解题分析】设公差为,,,联立解得,故选C.点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如为等差数列,若,则.4、B【解题分析】分析:先分析出ab<0,a+b<0,再利用作差法比较的大小关系得解.详解:由题得<ln1=0,>.所以ab<0..所以,所以.故答案为B.点睛:(1)本题主要考查实数大小的比较和对数函数的性质,考查对数的运算,意在考查学生对这些知识的掌握水平和基本运算能力.(2)解答本题的关键是对数的运算.5、D【解题分析】
分类讨论a的范围,根据真数的符号以及单调性,求出a的范围.【题目详解】解:函数y=loga(8﹣ax)(其中a>0,a≠1)在区间[1,4]上单调递减,当a>1时,由函数t=8﹣ax在区间[1,4]上单调递减且t>0,故8﹣4a>0,求得1<a<1.当0<a<1时,由函数t=8﹣ax在区间[1,4]上单调递减,可得函数y=loga(8﹣ax)在区间[1,4]上单调递增,这不符合条件.综上,实数a的取值范围为(1,1),故选:D.【题目点拨】本题主要考查复合函数的单调性,对数函数、一次函数的性质,属于中档题.6、B【解题分析】
直接根据正态曲线的对称性求解即可.【题目详解】,,,即,,故选B.【题目点拨】本题主要考查正态分布与正态曲线的性质,属于中档题.正态曲线的常见性质有:(1)正态曲线关于对称,且越大图象越靠近右边,越小图象越靠近左边;(2)边越小图象越“痩长”,边越大图象越“矮胖”;(3)正态分布区间上的概率,关于对称,7、D【解题分析】分析:先由平面向量的加法运算和数乘运算得到,再利用数量积为0进行判定.详解:由题意,得,因为,,,,故选D.点睛:本题考查平面向量的坐标运算、平面向量垂直的判定等知识,意在考查学生的逻辑思维能力和基本计算能力.8、D【解题分析】
根据分步计数原理分两步:先安排宿舍,再分配学生,继而得到结果.【题目详解】根据题意可以分两步完成:第一步:选宿舍有10种;第二步:分配学生有6种;根据分步计数原理有:10×6=60种.故选D.【题目点拨】本题考查排列组合及计数原理的实际应用,考查了分析问题解决问题的能力,属于基础题.9、B【解题分析】由题意得,事件“”,即,所以事件“”满足条件是,由几何概型的概率公式可得概率为,故选B.10、C【解题分析】
分别求得两个残差,根据残差相同列方程,由此得出正确选项.【题目详解】样本点的残差为,样本点的残差为,依题意,故,所以选C.【题目点拨】本小题主要考查残差的计算,考查方程的思想,属于基础题.11、B【解题分析】分析:由三视图求出圆锥母线,高,底面半径.进而求出锥体的底面积,代入锥体体积公式,可得答案.详解:由已知中的三视图,圆锥母线l=圆锥的高h=,圆锥底面半径为r==2,由题得截去的底面弧的圆心角为120°,底面剩余部分为S=πr2+sin120°=π+,故几何体的体积为:V=Sh=×(π+)×2=.故答案为:B.点睛:(1)本题主要考查三视图找原图,考查空间几何体的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力基本的计算能力.(2)解答本题的关键是弄清几何体的结构特征并准确计算各几何要素.12、B【解题分析】
由偶函数的性质得出函数在上单调递增,并比较出三个正数、、的大小关系,利用函数在区间上的单调性可得出、、的大小关系.【题目详解】偶函数在上单调递减,函数在上单调递增,,,,,,故选:B.【题目点拨】本题考查利用函数的单调性比较函数值的大小关系,解题时要利用自变量的大小关系并结合函数的单调性来比较函数值的大小,考查分析问题和解决问题的能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、2816【解题分析】
观察数表可知,每一行的首尾两项数字的和成等比数列,由于最后一行的数字等于倒数第二行两项的和,所以只要根据规律求出第9行的首尾两项之和即可.【题目详解】由题意可知最后一行为第10行,第一行首尾两项的和为11,第二行首尾两项的和为22,第三行首尾两项的和为44,,则第9行首尾两项的和为,所以第十行的数字是,故答案是:.【题目点拨】该题考查的是有关归纳推理的问题,涉及到的知识点有根据题中所给的条件,归纳出对应的结论,属于简单题目.14、1【解题分析】由题意,得x∈(0,2)时,f(x)=lnx-ax(a>)有最大值-1,f′(x)=-a,由f′(x)=0得x=∈(0,2),且x∈(0,)时,f′(x)>0,f(x)单调递增,x∈(,2)时,f′(x)<0,f(x)单调递减,则f(x)max=f()=ln-1=-1,解得a=1.15、【解题分析】分析:先根据类比将正四面体分割成四个小三棱锥,再根据体积关系求内切球半径.详解:设正四面体的内切球半径为,各面面积为,所以.点睛:等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高或内切球的半径,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.16、【解题分析】分析:通过讨论,分别求出为真时的的范围,根据为假命题,则命题均为假命题,从而求出的范围即可.详解:命题中,当时,符合题意.
当时,,则,
所以命题为真,则,
命题中,∵,
由,得或,此时函数单调递增,
由,得,此时函数单调递减.
即当时,函数取得极大值,
当时,函数取得极小值,
要使函数只有一个零点,则满足极大值小于0或极小值大于0,
即极大值,解得.
极小值,解得.
综上实数的取值范围:或.为假命题,则命题均为假命题.
即或,
即答案为点睛:本题考查了复合命题的判断及其运算,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ).【解题分析】分析:(Ⅰ)利用椭圆的几何性质求椭圆的焦距及离心率.(Ⅱ)设(,),先求出四边形面积的表达式,再利用基本不等式求它的最大值.(Ⅰ)在椭圆:中,,,所以,故椭圆的焦距为,离心率.(Ⅱ)设(,),则,故.所以,所以,.又,,故.因此.由,得,即,所以,当且仅当,即,时等号成立.点睛:本题的关键在于求此的表达式和化简,由于四边形是不规则的图形,所以用割补法求其面积,其面积求出来之后,又要利用已知条件将其化简为,再利用基本不等式求其最小值.18、(1);(2)【解题分析】
(1)解不等求得p,根据m的值求得q;根据p∧q为真可知p、q同时为真,可求得x的取值范围.(2)先求得q.根据p是q的充分不必要条件,得到不等式组,解不等式组即可得到m的取值范围.【题目详解】(1)由x2-6x+5≤0,得1≤x≤5,∴p:1≤x≤5.当m=2时,q:-1≤x≤3.若p∧q为真,p,q同时为真命题,则即1≤x≤3.∴实数x的取值范围为[1,3].(2)由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.∵p是q的充分不必要条件,∴解得m≥4.∴实数m的取值范围为[4,+∞).【题目点拨】本题考查了复合命题的简单应用,充分必要条件的关系,属于基础题.19、(1)1,(2)【解题分析】由题意知,第五项系数为,第三项的系数,则有,解.(1)令得各项系数的和为.(2)通项公式,令,则,故展开式中含的项为.20、(1)的普通方程为:,的直角坐标方程为:(2)的最小值为,此时的直角坐标为【解题分析】
(1)直接利用参数方程和极坐标方程公式得到答案.(2)最小值为点到直线的距离,,再根据三角函数求最值.【题目详解】(1):,化简:.:,由,,化简可得:.所以的普通方程为:,的直角坐标方程为:;(2)由题意,可设点的直角坐标为,因为是直线,所以的最小值,即为到的距离的最小值,利用三角函数性质求得最小值.,其中,,当且仅当,时,取得最小值,最小值为,此时的直角坐标为.【题目点拨】本题考查了参数方程,极坐标方程,利用三角函数求最小值可以简化运算.21、(1);(2)11,-1【解题分析】
(1).令,解此不等式,得x<-1或x>1,因此,函数的单调增区间为.(2)令,得或.-当变化时,,变化状态如下表:
-2
-1
1
2
+
0
-
0
+
-1
11
-1
11
从表中可以看出,当时,函数取得最小值.当时,函数取得最大值11.22、(1);(2).【解题分析】分析:(1)由经过点P,得,由离心率为得=,再根据a2=b2+c2联立解方程组即可;(2)联立直线方程与椭圆方程消y,得,易知判别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厂房代建代租合同范本
- 双人合作开店合同范本
- 动物苗种买卖合同范本
- 农村船舶出售合同范本
- 别墅公寓买卖合同范本
- 合伙经营药店合同范本
- 会议策划服务合同范本
- 厂房到期合同终止协议
- 别墅分租装修合同范本
- 2025年语文课标考试试题及答案
- HTTP协议课件教学课件
- 物业防寒防冻安全培训课件
- 2025道中华铸牢中华民族共同体意识知识竞赛试题(+答案)
- T-CCUA 048-2025 政务信息系统运行维护费用定额测算方法
- 产教融合机制课题申报书
- 建筑工地环保及噪音控制施工方案
- 2024年下半年 软件设计师 上午试卷
- 2025新外研社版七年级上英语单词汉译英默写表(开学版)
- 消化内科出科题目及答案
- 第7章广泛应用的酸碱盐(上)-2021学年九年级化学下册必背知识手册(沪教版)(默写卡)
- 2025年铅酸蓄电池行业研究报告及未来发展趋势预测
评论
0/150
提交评论