2024届云南省泸水五中数学高二下期末联考模拟试题含解析_第1页
2024届云南省泸水五中数学高二下期末联考模拟试题含解析_第2页
2024届云南省泸水五中数学高二下期末联考模拟试题含解析_第3页
2024届云南省泸水五中数学高二下期末联考模拟试题含解析_第4页
2024届云南省泸水五中数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省泸水五中数学高二下期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.542.已知某企业上半年前5个月产品广告投入与利润额统计如下:月份12345广告投入(万元)9.59.39.18.99.7利润(万元)9289898793由此所得回归方程为,若6月份广告投入10(万元)估计所获利润为()A.97万元 B.96.5万元 C.95.25万元 D.97.25万元3.若△ABC的内角A,B,C的对边分别为a,b,c,且,△ABC的面,则a=()A.1 B. C. D.4.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件为“抓取的球中存在两个球同色”,事件为“抓取的球中有红色但不全是红色”,则在事件发生的条件下,事件发生的概率()A. B. C. D.5.展开式中第5项的二项式系数为()A.56 B.70 C.1120 D.-11206.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x(℃)181310-1用电量(度)24343864由表中数据得线性回归方程,预测当气温为-4℃时用电量度数为()A.68 B.67 C.65 D.647.设集合A=1,2,4,B=3,4,则集合A.4 B.1,4 C.2,3 D.1,2,3,48.已知函数,那么下列结论中错误的是()A.若是的极小值点,则在区间上单调递减B.函数的图像可以是中心对称图形C.,使D.若是的极值点,则9.设函数,()A.3 B.6 C.9 D.1210.已知复数的共轭复数为,则()A.-1 B.1 C. D.11.在黄陵中学举行的数学知识竞赛中,将高二两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是1.这两个班参赛的学生人数是()A.80 B.90C.100 D.12012.在等差数列中,是函数的两个零点,则的前10项和等于()A. B.15 C.30 D.二、填空题:本题共4小题,每小题5分,共20分。13.设x,y满足约束条件,则的最大值为________.14.若,满足不等式,则的取值范围是________.15.根据所示的伪代码,若输入的的值为-1,则输出的结果为________.16.已知函数对于任意实数满足条件,若,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,矩阵B的逆矩阵.(1)求矩阵A的特征值及矩阵B.(2)若先对曲线实施矩阵A对应的变换,再作矩阵B对应的变换,试用一个矩阵来表示这两次变换,并求变换后的结果.18.(12分)已知等差数列的前n项和为,各项为正的等比数列的前n项和为,,,.(1)若,求的通项公式;(2)若,求19.(12分)在提出的“变害为利,造福人民”的木兰溪全流域治理系统过程中,莆田市环保局根据水文观测点的历史统计数据,得到木兰溪某段流域的每年最高水位(单位:米)的频率分布直方图(如图).若将河流最高水位落入各组的频率视为概率,并假设每年河流最高水位相互独立.(1)求在未来3年里,至多有1年河流最高水位的概率(结果用分数表示);(2)根据评估,该流域对沿河企业影响如下:当时,不会造成影响;当时,损失1000万元;当时,损失6000万元.为减少损失,莆田市委在举行的一次治理听证会上产生了三种应对方案:方案一:布置能防御35米最高水位的工程,需要工程费用380万元;方案二:布置能防御31米最高水位的工程,需要工程费用200万元;方案三:不采取措施;试问哪种方案更好,请说明理由.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数且).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是.(1)将曲线的极坐标方程化为直角坐标方程;(2)判断直线与曲线的位置关系,并说明理由.21.(12分)汽车尾气中含有一氧化碳,碳氢化合物等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气之中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废,某环境组织为了解公众对机动车强制报废标准的了解情况,随机调查了人,所得数据制成如下列联表:(1)若从这人中任选人,选到了解强制报废标准的人的概率为,问是否在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”?(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过年,可近似认为排放的尾气中浓度﹪与使用年限线性相关,确定与的回归方程,并预测该型号的汽车使用年排放尾气中的浓度是使用年的多少倍.附:,0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)已知复数.(1)化简:;(2)如果,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况;1°丙、丁、戌三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:A32×C31×C21×A22=72种;由分类计数原理,可得共有18+36+72=126种,故选B.考点:排列、组合的实际应用.2、C【解题分析】

首先求出的平均数,将样本中心点代入回归方程中求出的值,然后写出回归方程,然后将代入求解即可【题目详解】代入到回归方程为,解得将代入,解得故选【题目点拨】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。3、A【解题分析】

根据三角形面积公式可得,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【题目详解】因为,,面积,所以.所以.所以,.所以.故选A.【题目点拨】本题考查正余弦定理,面积公式,基础题.4、C【解题分析】

根据题意,求出和,由公式即可求出解答.【题目详解】解:因为事件为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以事件发生且事件发生概率为:故.故选:C.【题目点拨】本题考查条件概率求法,属于中档题.5、B【解题分析】分析:直接利用二项展开式的通项公式求解即可.详解:展开式的通项公式为则展开式中第5项的二项式系数为点睛:本题考查二项展开式的通项公式,属基础题.6、A【解题分析】

根据回归直线方程过样本中心点,计算出并代入回归直线方程,求得的值,然后将代入回归直线方程,求得预测的用电量度数.【题目详解】解:,,,线性回归方程为:,当时,,当气温为时,用电量度数为68,故选A.【题目点拨】本小题主要考查回归直线方程过样本中心点,考查方程的思想,属于基础题.7、A【解题分析】

利用交集的运算律可得出集合A∩B。【题目详解】由题意可得A∩B=4,故选:A【题目点拨】本题考查集合的交集运算,考查计算能力,属于基础题。8、A【解题分析】分析:求导f′(x)=3x2+2ax+b,导函数为二次函数,若存在极小值点,根据二次函数的图象便知一定存在极大值点,并且该极大值点在极小值点的左边,从而知道存在实数x1<x0,使f(x)在(﹣∞,x1)上单调递增,从而判断出A的结论错误,而根据f(x)的值域便知f(x)和x轴至少一个交点,从而B的结论正确,而a=b=c=0时,f(x)=x3为中心对称图形,从而判断C正确,而根据极值点的定义便知D正确,从而得出结论错误的为A.详解:A.f′(x)=3x2+2ax+b,导函数为二次函数;∴在极小值点的左边有一个极大值点,即方程f′(x)=0的另一根,设为x1;则x1<x0,且x<x1时,f′(x)>0;即函数f(x)在(﹣∞,x1)上单调递增,∴选项A错误;B.该函数的值域为(﹣∞,+∞),∴f(x)的图象和x轴至少一个交点;∴∃x0∈R,使f(x0)=0;∴选项B正确;C.当a=b=c=0时,f(x)=x3,为奇函数,图象关于原点对称;∴f(x)是中心对称图形,∴选项C正确;D.函数在极值点处的导数为0,∴选项D正确.故选:A.点睛:本题利用导函数研究了函数的极值点,零点,对称性,单调性等性质,考查了学生分析问题解决问题的能力,属于中档题.9、C【解题分析】.故选C.10、C【解题分析】

根据共轭复数的概念,可得,然后利用复数的乘法、除法法则,可得结果.【题目详解】,,,故选:C【题目点拨】本题考查复数的运算,注意细节,细心计算,属基础题.11、C【解题分析】

根据条件可求第二组的频率,根据第二组的频数即可计算两个班的学生人数.【题目详解】第二小组的频率是:,则两个班人数为:人.【题目点拨】本题考查频率分布直方图中,频率、频数与总数的关系,难度较易.12、B【解题分析】由题意得是方程的两根,∴,∴.选B.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

作出不等式组对应的平面区域,画出可行域,平移直线,找到z的最大值.【题目详解】x,y满足约束条件的可行域如图:

,则经过可行域的A时,目标函数取得最大值,由,解得,所以的最大值为1.故答案为:1.【题目点拨】本题考查了线性规划问题,求线性目标函数的最值问题,考查了画图能力.利用数形结合是解决本题的关键.14、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】解:由,满足不等式作出可行域如图,

令,目标函数经过A点时取的最小值,

联立,解得时得最小值,.

目标函数经过B点时取的最大值,

联立,解得,此时取得最大值,.

所以,z=2x+y的取值范围是.

故答案为:【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.15、【解题分析】

通过读条件语句,该程序是分段函数,代入即可得到答案.【题目详解】根据伪代码,可知,当时,,故答案为.【题目点拨】本题主要考查条件程序框图的理解,难度不大.16、3【解题分析】

根据题意,求得函数的周期性,得出函数的周期,然后利用函数的周期和的值,即可求解,得到答案.【题目详解】由题意,函数对任意实数满足条件,则,即函数是以4为周期的周期函数,又由,令,则,即,所以.【题目点拨】本题主要考查了抽象函数的应用,以及函数的周期性的判定和函数值的求解,其中解答中根据题设条件求得函数的周期是解答本题的关键,着重考查了推理与运算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)矩阵A的特征值为1,2;;(2),【解题分析】

(1)通过特征多项式即可得到特征值,利用,可计算出矩阵B;(2)首先可计算出的结果,然后设出,变换后的点设成,利用线性变换得到相关关系,从而得到新曲线.【题目详解】(1)矩阵A的特征多项式,令,则或,故矩阵A的特征值为1,2;设,根据,可得:即,解得,所以矩阵.(2)两次变换后的矩阵,在曲线上任取一点,在变换C的作用下得到,则,即,整理得,可得,即,代入得.【题目点拨】本题主要考查线性变换,特征值的计算,意在考查学生的分析能力,计算能力,难度中等.18、(1),(2)【解题分析】

(1)首先设出等差数列的公差与等比数列的公比,根据题中所给的式子,得到关于与的等量关系式,解方程组求得结果,之后根据等比数列的通项公式写出结果即可;(2)根据题中所给的条件,求得其公比,根据条件,作出取舍,之后应用公式求得结果.【题目详解】(1)设的公差为d,的公比为q,由得d+q=3,由得2d+q2=6,解得d=1,q=2.所以的通项公式为;(2)由得q2+q-20=0,解得q=-5(舍去)或q=4,当q=4时,d=-1,则S3=-6。【题目点拨】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式与求和公式,等比数列的通项公式与求和公式,正确理解与运用公式是解题的关键,注意对所求的结果进行正确的取舍.19、(1)(2)见解析【解题分析】

(1)先在频率分布直方图中找出河流最高水位在区间的频率,然后利用独立重复试验的概率公式计算出所求事件的概率;(2)计算出三种方案的损失费用期望,在三种方案中选择损失最小的方案.【题目详解】(1)由题设得,所以,在未来3年里,河流最高水位发生的年数为,则~,记事件“在未来3年里,至多有1年河流水位”为事件,则,∴未来3年里,至多有1年河流水位的概率为.(2)由题设得,,用分别表示方案一、方案二、方案三的损失,由题意得万元,的分布列为:20062000.990.01万元,的分布列为:0100060000.740.250.01∴万元,三种方案采取方案二的损失最小,采取方案二好.【题目点拨】本题考查独立重复试验概率的计算,考查离散型随机变量分布列及其数学期望,在求解时要弄清随机变量所服从的分布列类型,考查计算能力,属于中等题.20、(1);(2)相切.【解题分析】

(1)根据互化公式可得;(2)根据点到直线的距离与半径的关系可得.【题目详解】解:(1)由得,得,即直角坐标方程为:.(2)由,消去得,则圆心到直线的距离等于圆的半径,所以直线与圆相切.【题目点拨】本题考查了极坐标方程与直角坐标方程的转化,考查了直线与圆的位置关系.一般地,已知极坐标方程时,通过变形整理,将方程中的,分别代换为即可.判断直线与圆的位置关系时,可通过联立方程,由判别式判断交点个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论