




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省重点中学数学高二下期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是求样本数据方差的程序框图,则图中空白框应填入的内容为()A. B.C. D.2.展开式中项的系数是A.4 B.5C.8 D.123.设.若函数,的定义域是.则下列说法错误的是()A.若,都是增函数,则函数为增函数B.若,都是减函数,则函数为减函数C.若,都是奇函数,则函数为奇函数D.若,都是偶函数,则函数为偶函数4.在等差数列中,如果,且,那么必有,类比该结论,在等比数列中,如果,且,那么必有()A. B.C. D.5.已知随机变量~B(n,p),且E=2.4,D=1.44,则n,p值为()A.8,0.3 B.6,0.4 C.12,0.2 D.5,0.66.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁RP)∩Q=()A. B. C. D.7.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.用反证法证明命题“若,则全为”,其反设正确的是()A.至少有一个不为 B.至少有一个为C.全不为 D.中只有一个为9.已知,则展开式中,项的系数为()A. B. C. D.10.在二项式的展开式中,含的项的系数是().A. B. C. D.11.若是第四象限角,,则()A. B. C. D.12.已知的二项展开式中含项的系数为,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.化简__________.14.若函数在存在零点(其中为自然对数的底数),则的最小值是__________.15.已知集合则_______.16.位老师和位同学站成一排合影,要求老师相邻且不在两端的排法有______种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论在上的单调性;(2)若对恒成立,求正整数的最小值.18.(12分)设正整数,集合,是集合P的3个非空子集,记为所有满足:的有序集合对(A,B,C)的个数.(1)求;(2)求.19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)将,的方程化为普通方程,并说明它们分别表示什么曲线?(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.20.(12分)已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是复平面上的四个点,且向量对应的复数分别为z1,z2.(1)若z1+z2=1+i,求z1,z2;(2)若|z1+z2|=2,z1-z2为实数,求a,b的值.21.(12分)已知函数在点M(1,1)处的切线方程为.(1)求函数的解析式;(2)求函数的单调区间和极值.22.(10分)已知函数.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由题意知该程序的作用是求样本的方差,由方差公式可得.【题目详解】由题意知该程序的作用是求样本的方差,所用方法是求得每个数与的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:故选:D【题目点拨】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.2、B【解题分析】
把(1+x)5按照二项式定理展开,可得(1﹣x)(1+x)5展开式中x2项的系数.【题目详解】(1﹣x)(1+x)5=(1﹣x)(1+5x+10x2+10x3+5x4+x5),其中可以出现的有1*10x2和﹣x*5x,其它的项相乘不能出现平方项,故展开式中x2项的系数是10﹣5=5,故选B.【题目点拨】这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.3、C【解题分析】
根据题意得出,据此依次分析选项,综合即可得出答案.【题目详解】根据题意可知,,则,据此依次分析选项:对于A选项,若函数、都是增函数,可得图象均为上升,则函数为增函数,A选项正确;对于B选项,若函数、都是减函数,可得它们的图象都是下降的,则函数为减函数,B选项正确;对于C选项,若函数、都是奇函数,则函数不一定是奇函数,如,,可得函数不关于原点对称,C选项错误;对于D选项,若函数、都是偶函数,可得它们的图象都关于轴对称,则函数为偶函数,D选项正确.故选C.【题目点拨】本题考查分段函数的奇偶性与单调性的判定,解题时要理解题中函数的定义,考查判断这些基本性质时,可以从定义出发来理解,也可以借助图象来理解,考查分析问题的能力,属于难题.4、D【解题分析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).5、B【解题分析】,选B.6、C【解题分析】
先化简集合A,再求,进而求.【题目详解】x(x-2)≥0,解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞)由题意得,=(0,2),∴,故选C.【题目点拨】本题考查的是有关集合的运算的问题,在解题的过程中,要先化简集合,明确集合的运算法则,进而求得结果.7、B【解题分析】
分别求出两不等式的解集,根据两解集的包含关系确定.【题目详解】化简不等式,可知推不出;由能推出,故“”是“”的必要不充分条件,故选B.【题目点拨】本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.8、A【解题分析】由反证法的定义:证明命题“若,则全为”,其反设为至少有一个不为.本题选择A选项.9、B【解题分析】
==﹣1,则二项式的展开式的通项公式为Tr+1=﹣•,令9﹣2r=3,求得r=3,∴展开式中x3项的系数为﹣•=﹣,故选B【题目点拨】本题考查集合的混合运算.10、C【解题分析】
利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【题目详解】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.11、C【解题分析】
确定角所处的象限,并求出的值,利用诱导公式求出的值.【题目详解】是第四象限角,则,,且,所以,是第四象限角,则,因此,,故选C.【题目点拨】本题考查三角求值,考查同角三角函数基本关系、诱导公式的应用,再利用同角三角函数基本关系求值时,要确定对象角的象限,于此确定所求角的三角函数值符号,结合相关公式求解,考查计算能力,属于中等题.12、C【解题分析】分析:先根据二项式定展开式通项公式求m,再求定积分.详解:因为的二项展开式中,所以,因此选C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:利用二项式逆定理即可.详解:(展开式实部)(展开式实部).故答案为:.点睛:本题考查二项式定理的逆应用,考查推理论证能力.14、【解题分析】
依题意可得方程,在上存在解,要使取得最小值,则,令,利用导数研究函数的单调性,对分类讨论,分别求出的最小值,即可得解,【题目详解】解:依题意在存在零点,即方程在存在解,即,在存在解,要使取得最小值,则,令,则,①当时,在上恒成立,即在上单调递增,所以,即,,所以;②当即时,当时,,当时,,即在上单调递减,在上单调递增,所以,,所以,所以,令,则,,所以,所以在上单调递减,所以③当时,则在上恒成立,即在上单调递减,综上可得的最小值为故答案为:.【题目点拨】本题考查函数零点及最值问题,考查分析问题解决问题的能力及数形结合思想,属于难题.15、【解题分析】
先求出集合A,再求得解.【题目详解】由题得所以.故答案为【题目点拨】本题主要考查集合的补集运算,意在考查学生对该知识的理解掌握水平,属于基础题.16、24【解题分析】
根据题意,分2步进行分析:第一步,将3位同学全排列,排好后中间有2个空位可用;第二步,将2位老师看成一个整体,安排在2个空位中,由分步计数原理计算可得答案.【题目详解】解:根据题意,分2步进行分析:第一步,将3位同学全排列,有种排法,排好后中间有2个空位可用;第二步,将2位老师看成一个整体,安排在2个空位中,有种安排方法.则有种排法.故答案为:24.【题目点拨】本题考查排列组合及简单的计数问题.对于不相邻的问题,一般采用插空法;对于相邻的问题,一般采用捆绑法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在上单调递增,在上单调递减;(2)5.【解题分析】分析:(1)对函数求导,分类讨论即可;(2)∵对恒成立,∴,解得或,则正整数的最小值为.即只需要证明当时,对恒成立即可.详解:(1),当时,在上单调递增.当或时,,在单调递减.当且时,令,得;令,得.∴在上单调递增,在上单调递减.(2)∵对恒成立.∴,解得或,则正整数的最小值为.下面证明当时,对恒成立,过程如下:当时,令,得;令,得.故,从而对恒成立.故整数的最小值为.点睛:不等式的证明问题,可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想.18、(1),(2)【解题分析】
(1)通过分析,,分别讨论可得到;(2)通过分析A共有种不同情形,集合B共有种不同情形,集合C随集合B确定而唯一确定,于是可得通项公式.【题目详解】当时,集合,因为是集合P的3个非空子集,根据题意,所以当时,或;当时,或;当时,或.所以.(2)当A中的元素个数为时,集合A共有种不同情形,集合B共有种不同情形,集合C随集合B确定而唯一确定,所以.【题目点拨】本题主要考查数列,集合,排列组合的综合运用,意在考查学生的划归能力,分析能力,逻辑推理能力,难度较大.19、(1)表示以为圆心,1为半径的圆,表示焦点在轴上的椭圆;(2).【解题分析】试题分析:(1)分别将曲线、的参数方程利用平方法消去参数,即可得到,的方程化为普通方程,进而得到它们分别表示什么曲线;(2),利用点到直线距离公式可得到直线的距离,利用辅助角公式以及三角函数的有界性可得结果.试题解析:(1)的普通方程为,它表示以为圆心,1为半径的圆,的普通方程为,它表示中心在原点,焦点在轴上的椭圆.(2)由已知得,设,则,直线:,点到直线的距离,所以,即到的距离的最小值为.20、(1);(2)【解题分析】
(1)向量对应的复数分别为,,利用,即可得出;(2)为实数,可得,即可得出结论.【题目详解】(1)∵=(a-1,-1),=(-3,b-3),∴z1=(a-1)-i,z2=-3+(b-3)i,∴z1+z2=(a-4)+(b-4)i=1+i,∴a-4=1,b-4=1,解得a=b=5,∴z1=4-i,z2=-3+2i.(2)∵|z1+z2|=2,z1-z2为实数,z1+z2=(a-4)+(b-4)i,z1-z2=(a+2)+(2-b)i,∴=2,2-b=0,∴a=4,b=2.【题目点拨】本题主要考查复数的几何意义,复数的模以及复数与向量的综合应用,属于中档题.复数的模的几何意义是复平面内两点间的距离,所以若,则表示点与点的距离.21、(1)f(x)=x2-4lnx(2)函数的单调递增区间是,单调递减区间是.极小值为,无极大值【解题分析】
(1)求出函数的导数,根据切线方程得到关于的方程组,解出即可。(2)求出函数的导数,根据函数的单调性求出函数的极值即可。【题目详解】(1),因为点M(1,1)处的切线方程为2x+y-3=0,所以,所以,则f(x)=x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工材料现场验收方案
- 宿舍楼内部通道与防火设计方案
- 建筑工程项目机电设备调试与运行方案
- 影视艺术综论学习材料12课件
- 水电基本知识培训总结课件
- 二零二五年彩钢构件加工及施工总承包协议
- 二零二五年度商业地产融资居间服务专项合同
- 二零二五年度抵债协议书(债权重组)专业版
- 2025版电梯设备采购与安全监管协议
- 二零二五年度建筑钢筋焊接技术指导与施工合同
- GB/T 1149.4-2008内燃机活塞环第4部分:质量要求
- 2022年高校教师资格证(高等教育心理学)考试题库深度自测300题加下载答案(四川省专用)
- 地基基础工程施工方法及基础知识课件
- 金风15兆瓦机组变流部分培训课件
- 2017年9月国家公共英语(三级)笔试真题试卷(题后含答案及解析)
- 膀胱镜检查记录
- 2021年西安陕鼓动力股份有限公司校园招聘笔试试题及答案解析
- 化工装置静设备基本知识
- 江西师范大学研究生院非事业编制聘用人员公开招聘1人(专业学位培养办公室助理)(必考题)模拟卷
- 2021社会保险法知识竞赛试题库及答案
- 罐头食品加工工艺课件
评论
0/150
提交评论