版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省长泰县2023-2024学年数学九年级第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点在反比例函数的图像上,则的值为()A. B. C. D.2.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.12mmC.6mm D.6mm3.已知函数y=ax2+bx+c(a≠1)的图象如图,给出下列4个结论:①abc>1;②b2>4ac;③4a+2b+c>1;④2a+b=1.其中正确的有()个.A.1 B.2 C.3 D.44.把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为()A.y=(x﹣3)2+1 B.y=(x+1)2﹣1 C.y=(x﹣3)2﹣1 D.y=(x+1)2﹣25.两个相似多边形的面积比是9∶16,其中小多边形的周长为36cm,则较大多边形的周长为)A.48cm B.54cm C.56cm D.64cm6.下列几何图形不是中心对称图形的是()A.平行四边形 B.正五边形 C.正方形 D.正六边形7.下列函数是关于的反比例函数的是()A. B. C. D.8.若分式的运算结果为,则在中添加的运算符号为()A.+ B.- C.+或÷ D.-或×9.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm10.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(每小题3分,共24分)11.菱形ABCD的周长为20,且有一个内角为120°,则它的较短的对角线长为______.12.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.13.正五边形的中心角的度数是_____.14.如图,在中,,,点是边的中点,点是边上一个动点,当__________时,相似.15.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.16.已知点,在函数的图象上,则的大小关系是________17.一个小组新年互送贺卡,若全组共送贺卡72张,则这个小组共______人.18.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.三、解答题(共66分)19.(10分)已知关于的一元二次方程.(1)若方程有实数根,求的取值范围;(2)若方程的两个实数根的倒数的平方和等于14,求的值.20.(6分)有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.21.(6分)在平面直角坐标系xOy中,已知抛物线,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且,求点B坐标.22.(8分)我市某公司用800万元购得某种产品的生产技术后,进一步投入资金1550万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价需要定在200元到300元之间较为合理.销售单价(元)与年销售量(万件)之间的变化可近似的看作是如下表所反应的一次函数:销售单价(元)200230250年销售量(万件)14119(1)请求出与之间的函数关系式,并直接写出自变量的取值范围;(2)请说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?23.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=1.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(1)求经过C、D两点的一次函数解析式.24.(8分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,请求出球的半径.25.(10分)如图,内接于,且为的直径.的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点.(1)求证:;(2)试猜想线段,,之间有何数量关系,并加以证明;(3)若,,求线段的长.26.(10分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法画树状图或列表的方法求取出的两个小球上的数字之和为5的概率.
参考答案一、选择题(每小题3分,共30分)1、B【解析】把点M代入反比例函数中,即可解得K的值.【详解】解:∵点在反比例函数的图像上,∴,解得k=3.【点睛】本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.2、A【解析】试题解析:已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.故选A.3、C【分析】二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点来确定,结合抛物线与x轴交点的个数来分析解答.【详解】解:①由抛物线的对称轴可知:>1,∴ab<1,由抛物线与y轴的交点可知:c>1,∴abc<1,故①错误;②由图象可知:△>1,∴b2−4ac>1,即b2>4ac,故②正确;③∵(1,c)关于直线x=1的对称点为(2,c),而x=1时,y=c>1,∴x=2时,y=c>1,∴y=4a+2b+c>1,故③正确;④∵,∴b=−2a,∴2a+b=1,故④正确.故选C.【点睛】本题考查了二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中等题型.4、C【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把抛物线y=(x﹣1)2+2沿x轴向右平移2个单位后,再沿y轴向下平移3个单位,得到的抛物线解析式为y=(x﹣1﹣2)2+2﹣3,即y=(x﹣3)2﹣1.故选:C.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5、A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:1.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=2.大多边形的周长为2cm.故选A.考点:相似多边形的性质.6、B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A.平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B.正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C.正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D.正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B【点睛】本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.7、B【分析】根据反比例函数的定义进行判断.【详解】A.,是一次函数,此选项错误;B.,是反比例函数,此选项正确;C.,是二次函数,此选项错误;D.,是y关于(x+1)的反比例函数,此选项错误.故选:B【点睛】本题考查了反比例函数的定义,解题的关键是掌握反比例函数的定义.8、C【分析】根据分式的运算法则即可求出答案.【详解】解:+=,÷==x,故选:C.【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.9、D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选D.10、C【分析】由平行四边形的性质得出CD∥AB,进而得出△DEF∽△BAF,再利用相似三角形的性质可得出结果.【详解】∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴,∴.故选C.【点睛】本题考查了相似三角形的性质与判定及平行四边形的性质,解题的关键是掌握相似三角形的面积比等于相似比的平方.二、填空题(每小题3分,共24分)11、1【分析】根据菱形的性质可得菱形的边长为1,然后根据内角度数进而求出较短对角线的长.【详解】如图所示:菱形ABCD的周长为20,AB=20÷4=1,又,四边形ABCD是菱形,,AB=AD,是等边三角形,BD=AB=1.故答案为1.【点睛】本题主要考查菱形的性质及等边三角形,关键是熟练掌握菱形的性质.12、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k的几何意义.13、72°.【分析】根据正多边形的圆心角定义可知:正n边形的圆中心角为,则代入求解即可.【详解】解:正五边形的中心角为:.故答案为72°.【点睛】此题考查了正多边形的中心角的知识.题目比较简单,注意熟记定义.14、【分析】直接利用,找到对应边的关系,即可得出答案.【详解】解:当时,
则,
∵,点是边的中点,
∴∵,∴则综上所述:当BQ=时,.
故答案为:.【点睛】此题主要考查了相似三角形的性质,得到对应边成比例是解答此题的关键.15、【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=,OG=GF=,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG=HB=GD∴AB=CD又∵AB∥CD∴四边形ABCD是平行四边形,在Rt△OHA中,由勾股定理得:AH=∴AB=∴四边形ABCD的面积=AB×GH=.故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形.16、【分析】把横坐标分别代入关系式求出纵坐标,再比较大小即可.【详解】∵A(3,y1),B(5,y2)在函数的图象上,∴,,∴y1>y2.【点睛】本题考查反比例函数,掌握反比例函数图象上点的坐标特征是解题的关键.17、1【解析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数﹣1)=72,把相关数值代入计算即可.【详解】设这小组有x人.由题意得:x(x﹣1)=72解得:x1=1,x2=﹣8(不合题意,舍去).即这个小组有1人.故答案为:1.【点睛】本题考查了一元二次方程的应用,得到互送贺卡总张数的等量关系是解决本题的关键,注意理解答本题中互送的含义,这不同于直线上点与线段的数量关系.18、4【分析】过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,利用正方形的性质易证△ADG≌△DCF,得到AG=DF,设D点横坐标为m,则OF=AG=DF=m,易得OE为△CDF的中位线,进而得到OF=OC,然后利用勾股定理建立方程求出,进而求出k.【详解】如图,过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,∵四边形ABCD为正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF设D点横坐标为m,则OF=AG=DF=m,∴D点坐标为(m,m)∵OE∥DF,CE=ED∴OE为△CDF的中位线,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D点坐标为(m,m)∴故答案为:4.【点睛】本题考查反比例函数与几何的综合问题,需要熟练掌握正方形的性质,全等三角形的判定和性质,中位线的判定和性质以及勾股定理,解题的关键是作出辅助线,利用全等三角形推出点D的横纵坐标相等.三、解答题(共66分)19、(1)且;(2)【分析】(1)根据方程有实数根得出,且解之可得;
(2)利用根与系数的关系可用k表示出的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【详解】解:(1)由于是一元二次方程且有实数根,所以,即,且∴且(2)设方程的两个根为,则,∴整理,得解得根据(1)中且,得.【点睛】此题主要考查了根的判别式和根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20、(1);(2)见解析【分析】(1)直接根据概率公式计算即可.
(2)首先列表列出可能的情况,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,由概率公式得出概率;得出游戏不公平;关键概率相等修改即可.【详解】解:(1)共有4张牌,正面是中心对称图形的情况有3种,从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是;故答案为;(2)游戏不公平,理由如下:列表得:共有12种结果,每种结果出现的可能性相同,摸出的两张牌面图形既是轴对称图形又是中心对称图形的结果有2种,即∴(两张牌面图形既是轴对称图形又是中心对称图形),∴游戏不公平.修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.正确利用树状图分析两次摸牌所有可能结果是关键,区分中心对称图形是要点.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)开口方向向下,点A的坐标是,在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)点B的坐标为【分析】(1)先化为顶点式,然后由二次函数的性质可求解;(2)如图,设直线与对称轴交于点,则,设线段的长为,则,可求点坐标,代入解析式可求的值,即可求点坐标.【详解】解:(1)抛物线的开口方向向下,顶点的坐标是,抛物线的变化情况是:在对称轴直线左侧部分是上升的,右侧部分是下降的;(2)如图,设直线与对称轴交于点,则.设线段的长为,则,点的坐标可表示为,代入,得.解得(舍,,点的坐标为.【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点坐标是本题的关键.22、(1);(2)亏损,赔了110万元【分析】(1)设,将,代入求得系数即可.(2)根据年获利=单件利润销量-800-1550【详解】解:(1)设,;(2),对称轴,∵,,∴时,(万元)1550+800-2240=110(万元)∴赔了110万元.【点睛】本题考查了二次函数的实际中的应用,首先要明确题意,确定变量,建立模型解答.23、(1);(2);(1).【解析】试题分析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,通过解直角三角形即可得出结论;(1)由m的值,可找出点C、D的坐标,设出过点C、D的一次函数的解析式为y=ax+b,由点C、D的坐标利用待定系数法即可得出结论.试题解析:(1)设点D的坐标为(2,m)(m>0),则点A的坐标为(2,1+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数的函数图象上,∴,解得:,∴反比例函数的解析式为.(2)∵m=1,∴点A的坐标为(2,2),∴OB=2,AB=2.在Rt△ABO中,OB=2,AB=2,∠ABO=90°,∴OA==,cos∠OAB==.(1))∵m=1,∴点C的坐标为(2,2),点D的坐标为(2,1).设经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版贫血症状识别与营养护理指导
- 幼儿园科普教育
- 医院感染风险评估案例
- 腹膜透析患者营养管理
- 线上考级方法分享
- 小儿消化不良护理科普
- 声音管理员工自我介绍
- 钉钉功能介绍及使用方法
- 长期打针血管护理方法
- 脑瘤常见症状解析及护理要点
- 早产儿视网膜病预防管理专家共识(2024)解读
- 2024-2025学年福建省厦门一中八年级(上)期中物理试卷(含答案)
- 银行账户共管协议(三方)
- 人教版九年级数学上册第二十三章专题四模型拓展-旋转模型教学课件
- 中国文化概论·第九章·第一节(一)
- 开山螺杆空压机说明书
- HG/T 6312-2024 化工园区竞争力评价导则(正式版)
- 交通银行测评题库答案大全
- 铁路电务劳动安全培训课件
- 喷浆工安全操作规程培训课件
- 《第八课 我的身体》参考课件
评论
0/150
提交评论