




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省明光市二中2024届高三下学期联考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B.C. D.2.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交3.已知全集,集合,则=()A. B.C. D.4.已知数列的通项公式是,则()A.0 B.55 C.66 D.785.已知中内角所对应的边依次为,若,则的面积为()A. B. C. D.6.已知全集,集合,,则阴影部分表示的集合是()A. B. C. D.7.已知为坐标原点,角的终边经过点且,则()A. B. C. D.8.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为89.某几何体的三视图如图所示,则该几何体中的最长棱长为()A. B. C. D.10.在中,,分别为,的中点,为上的任一点,实数,满足,设、、、的面积分别为、、、,记(),则取到最大值时,的值为()A.-1 B.1 C. D.11.若,,,则下列结论正确的是()A. B. C. D.12.已知函数,集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,,则________.14.(5分)已知为实数,向量,,且,则____________.15.曲线在点处的切线方程为__.16.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}满足条件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=,Sn为数列{bn}的前n项和,求证:Sn.18.(12分)已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.19.(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.20.(12分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.21.(12分)如图,在长方体中,,为的中点,为的中点,为线段上一点,且满足,为的中点.(1)求证:平面;(2)求二面角的余弦值.22.(10分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.2、D【解析】
通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.3、D【解析】
先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.4、D【解析】
先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【详解】解:由题意得,当为奇数时,,当为偶数时,所以当为奇数时,;当为偶数时,,所以故选:D【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.5、A【解析】
由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.6、D【解析】
先求出集合N的补集,再求出集合M与的交集,即为所求阴影部分表示的集合.【详解】由,,可得或,又所以.故选:D.【点睛】本题考查了韦恩图表示集合,集合的交集和补集的运算,属于基础题.7、C【解析】
根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【详解】根据题意,,解得,所以,所以,所以.故选:C.【点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.8、D【解析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.9、C【解析】
根据三视图,可得该几何体是一个三棱锥,并且平面SAC平面ABC,,过S作,连接BD,,再求得其它的棱长比较下结论.【详解】如图所示:由三视图得:该几何体是一个三棱锥,且平面SAC平面ABC,,过S作,连接BD,则,所以,,,,该几何体中的最长棱长为.故选:C【点睛】本题主要考查三视图还原几何体,还考查了空间想象和运算求解的能力,属于中档题.10、D【解析】
根据三角形中位线的性质,可得到的距离等于△的边上高的一半,从而得到,由此结合基本不等式求最值,得到当取到最大值时,为的中点,再由平行四边形法则得出,根据平面向量基本定理可求得,从而可求得结果.【详解】如图所示:因为是△的中位线,所以到的距离等于△的边上高的一半,所以,由此可得,当且仅当时,即为的中点时,等号成立,所以,由平行四边形法则可得,,将以上两式相加可得,所以,又已知,根据平面向量基本定理可得,从而.故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.11、D【解析】
根据指数函数的性质,取得的取值范围,即可求解,得到答案.【详解】由指数函数的性质,可得,即,又由,所以.故选:D.【点睛】本题主要考查了指数幂的比较大小,其中解答中熟记指数函数的性质,求得的取值范围是解答的关键,着重考查了计算能力,属于基础题.12、C【解析】
分别求解不等式得到集合,再利用集合的交集定义求解即可.【详解】,,∴.故选C.【点睛】本题主要考查了集合的基本运算,难度容易.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用交集定义直接求解.【详解】解:集合奇数,偶数,.故答案为:.【点睛】本题考查交集的求法,考查交集定义等基础知识,考查运算求解能力,属于基础题.14、5【解析】
由,,且,得,解得,则,则.15、【解析】
对函数求导后,代入切点的横坐标得到切线斜率,然后根据直线方程的点斜式,即可写出切线方程.【详解】因为,所以,从而切线的斜率,所以切线方程为,即.故答案为:【点睛】本题主要考查过曲线上一点的切线方程的求法,属基础题.16、或1【解析】
利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值.【详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,,切线与的交点为,可得,解得或。【点睛】本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)证明见解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,对分奇偶讨论,即可得;(Ⅱ)由(Ⅰ)得,用错位相减法求出,运用分析法证明即可.【详解】(Ⅰ),当为奇数时,,又由,得,当为偶数时,,又由a2=3,得,;(Ⅱ)由(1)得,则①②①-②可得:,,若证明Sn,则需要证明,又,即证明,即证,又显然成立,故Sn得证.【点睛】本题主要考查了由递推公式求通项公式,错位相减法求前项和,分析法证明不等式,考查了分类讨论的思想,考查了学生的运算求解与逻辑推理能力.18、(1);(2)【解析】
(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【详解】(1).取,解得.(2),因为,故,.根据余弦定理:,..【点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.19、(1)(2)【解析】
(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题.20、(1)(2)【解析】
(1)利用零点分段法,求得不等式的解集.(2)先求得,即,再根据“的代换”的方法,结合基本不等式,求得的最小值.【详解】(1)当时,,即,无解;当时,,即,得;当时,,即,得.故所求不等式的解集为.(2)因为,所以,则,.当且仅当即时取等号.故的最小值为.【点睛】本小题主要考查零点分段法解绝对值不等式,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.21、(1)证明见解析(2)【解析】
(1)解法一:作的中点,连接,.利用三角形的中位线证得,利用梯形中位线证得,由此证得平面平面,进而证得平面.解法二:建立空间直角坐标系,通过证明直线的方向向量和平面的法向量垂直,证得平面.(2)利用平面和平面法向量,计算出二面角的余弦值.【详解】(1)法一:作的中点,连接,.又为的中点,∴为的中位线,∴,又为的中点,∴为梯形的中位线,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在长方体中,,,两两互相垂直,建立空间直角坐标系如图所示,则,,,,,,,,,,,.(1)设平面的一个法向量为,则,令,则,.∴,又,∵,,又平面,平面.(2)设平面的一个法向量为,则,令,则,.∴.同理可算得平面的一个法向量为∴,又由图可知二面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 免疫治疗在自身免疫性心肌炎治疗中的新型免疫检查点抑制剂报告
- 企业演讲稿15篇
- 2025安防考试题库及答案
- 2025年教师师德师风考试题库及答案1
- 后勤经理管理办法
- 员工之声管理办法
- 商业对账管理办法
- 商务服务管理办法
- 商场库房管理办法
- 商洛认定管理办法
- (2025)全国保密教育线上培训知识考试题库及答案
- 2025天津低空经济投资发展有限公司员工社会招聘4人笔试历年参考题库附带答案详解
- 2025山东淄博市沂源县招聘城乡公益性岗位人员608人笔试模拟试题及答案解析
- 2025入团考试120题题库(含答案)
- 2025年楚雄州金江能源集团有限公司招聘考试试题(含答案)
- 健康照护师基础照护课件
- 两委考试试题及答案
- 急性重症胰腺炎急救护理
- 静脉注射技术课件
- 科学健身与健康生活
- 工业互联网安全能力构建技术指南(2025版)
评论
0/150
提交评论