




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市新宾满族自治县2024届七年级数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在△ABC中,三边a、b、c的大小关系是()(A)a<b<c(B)c<a<b(C)c<b<a(D)b<a<c2.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去。A.第1块 B.第2块 C.第3块 D.第4块3.为了了解我县5000多名七年级学生的期末数学成绩,任意抽取500名七年级学生的期末数学成绩进行统计分析,这个问题中,500是()A.总体 B.样本 C.个体 D.样本容量4.如图在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为()A. B. C. D.5.如图,是两条直线被直线所截后形成的八个角,则能够判定直线的是()A. B.C. D.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15° B.25° C.30° D.35°7.若m﹣x=2,n+y=3,则(m+n)﹣(x﹣y)=()A.﹣1 B.1 C.5 D.﹣58.把一张宽度相等的纸条按如图所示的方式折叠,则∠1的度数等于()A.65° B.55° C.45° D.50°9.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.10.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180° D.∠ABE=2∠D11.计算的结果是(
)A.
B. C. D.12.解方程组时,一学生把c看错得,已知方程组的正确解是,则a,b,c的值是()A.a,b不能确定,c=﹣2 B.a=4,b=5,c=﹣2C.a=4,b=7,c=﹣2 D.a,b,c都不能确定二、填空题(每题4分,满分20分,将答案填在答题纸上)13.用一个值即可说明命题“若,则”是假命题,这个值是______.14.如图,的同旁内角是__________.15.如图,射线平分,,垂足为,,,点是上的一个动点,则线段的最小值是_________.16.若关于,的方程组的解满足,则的值为_____.17.在一次“普法”知识竞赛中,竞赛题共20道,每道题都给出4个答案,其中只有一个答案正确,选对得5分,不选或选错扣1分,张华得分不低于70分,设张华答对道题,可得不等式:______.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)计算:(1).(2).19.(5分)如图,点O在直线AB上,OC⊥OD,∠EDO与∠1互余.(1)求证:ED//AB;(2)OF平分∠COD交DE于点F,若∠OFD=65°,补全图形,并求∠1的度数.20.(8分)一个正方形在平面直角坐标系内的位置如图所示,已知点A的坐标为(3,0),线段AC与BD的交点是M.(1)写出点M、B、C、D的坐标;(2)当正方形中的点M由现在的位置经过平移后,得到点M(﹣4,6)时,写出点A、B、C、D的对应点A′、B′、C′、D′的坐标,并求出四边形A′B′C′D′的面积21.(10分)解不等式组,并把解集在数轴上表示.22.(10分)如图,已知直线,分别是直线上的点.(1)在图1中,判断和之间的数量关系,并证明你的结论;(2)在图2中,请你直接写出和之间的数量关系(不需要证明);(3)在图3中,平分,平分,且,求的度数.23.(12分)先化简,再求值:,其中x=﹣1,y=1.
参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、D【解题分析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算。2、D【解题分析】
根据全等三角形的判定方法解答即可.【题目详解】解:1、2、3块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第4块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:D.【题目点拨】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、D【解题分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.由此即可解答.【题目详解】在这个问题中,样本是抽取500名七年级学生的期末数学成绩,样本容量为500,故选D.【题目点拨】本题考查了总体、个体与样本.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位,难度适中.4、B【解题分析】
首先根据题意得∠AOD=90°-56°=34°,再根据题意可得∠EOB=17°,最后根据∠AOB=∠AOD+∠DOE+∠EOB,求出结果.【题目详解】如图所示∠AOD=90°-56°=34°,∠EOB=17°所以∠AOB=∠AOD+∠DOE+∠EOB=34°+90°+17°=141°故选B.【题目点拨】本题考查方向角,找准角,然后根据角的和差,求出答案.5、B【解题分析】
根据平行线的判定定理对各选项进行逐一判断即可.【题目详解】A.∠3+∠4=180°不能判定任何直线平行,故本选项错误;B.∵∠1=∠3,∠1+∠8=180°,∴∠3+∠8=180°,∴a∥b,故本选项正确;C.∠5+∠7=180°不能判定任何直线平行,故本选项错误;D.∠2+∠6=180°不能判定任何直线平行,故本选项错误.故选B.【题目点拨】此题考查平行线的判定,解题关键在于掌握其判定定理.6、C【解题分析】
直接利用平行线的性质结合等腰直角三角形的性质得出答案.【题目详解】解:如图所示:由题意可得:∠1=∠3=15°,
则∠2=45°-∠3=30°.
故选:C.【题目点拨】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.7、C【解题分析】
直接利用整式的加减运算法则化简得出答案.【题目详解】解:∵m﹣x=2,n+y=3,∴m﹣x+n+y=1,∴(m+n)﹣(x﹣y)=1.故选:C.【题目点拨】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.8、A【解题分析】
利用翻折不变性,平行线的性质即可解决问题.【题目详解】根据折叠得出∠1=∠DEM=12∠FED∵是一张宽度相等的纸条,∴AE∥BM,∠2=130°,∴∠FED=∠2=130°,∴∠1=65°故答案选:A【题目点拨】本题考查翻折、平行线的性质,解题的关键是熟练掌握翻折、平行线的性质。9、D【解题分析】
根据对顶角的定义进行选择即可.【题目详解】解:4个选项中,A、B、C选项中的∠1与∠2不是对顶角,选项D中的∠1与∠2是对顶角,故选D.【题目点拨】本题考查了对顶角,掌握对顶角的定义是解题的关键.10、D【解题分析】
延长CD和BF交于点G,由AB∥CD可得∠CGB=∠ABG,再根据BF∥DE可得∠CGB=∠CDE,则∠CDE=∠ABG,再根据平分,得=2∠ABG,故可得到与∠CDE的关系.【题目详解】延长CD和BF交于点G,∵AB∥CD∴∠CGB=∠ABG,∵BF∥DE∴∠CGB=∠CDE,∴∠CDE=∠ABG,又∵平分,∴=2∠ABG,∴=2∠CDE,故选D.【题目点拨】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行解答.11、C【解题分析】分析:根据同底数幂的乘法,底数不变,指数相加即可得出答案.详解:a6·a2=a8故答案为C.点睛:本题主要考查了同底数幂相乘,熟记法则是解题的关键.12、B【解题分析】
把代入,把代入,得出三元一次方程组即可进行求解.【题目详解】把代入,把代入,得,解得a=4,b=5,c=﹣2故选B【题目点拨】此题主要考查二元一次方程组的解,解题的关键是把满足方程的解代入原方程进行求解.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、;【解题分析】
举出一个能使得ac=bc或ac<bc的一个c的值即可.【题目详解】若a>b,当c=1时ac=bc=1,当c<1时,ac<bc.故答案为:c≤1.【题目点拨】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.14、或【解题分析】
同旁内角的定义:“同旁”指在截线的同侧;“内”指在被截两条线之间,可据此进行判断.【题目详解】解:如图,∠B的同旁内角是∠A或∠C.故答案是:∠A或∠C.【题目点拨】本题主要考查了同旁内角的定义:“同旁”指在截线的同侧;“内”指在被截两条线之间,比较简单.15、1【解题分析】
根据垂线段最短得出当⊥OB时,的值最小,根据角平分线性质得出PQ=,求出即可.【题目详解】当⊥OB时,的值最小,∵平分,,,∴=,故答案为:1.【题目点拨】本题考查了角平分线性质,垂线段最短的应用,能得出要使最小时M的位置是解此题的关键.16、1【解题分析】
把方程组的两个方程相加,得到1x+1y=6m,结合x+y=6,即可求出m的值.【题目详解】∵,∴1x+1y=6m,∴x+y=2m,∵x+y=6,∴2m=6,∴m=1,故答案为1.【题目点拨】本题主要考查了二元一次方程组的解.解答本题的关键是把方程组的两个方程相加得到x,y与m的一个关系式.17、【解题分析】
设张华答对道题,则答错的题为(20﹣x)道,根据“选对得5分,不选或选错扣1分,张华得分不低于70分,”列出不等式即可.【题目详解】解:设张华答对道题,则答错的题为(20﹣x)道,根据题意得:.故答案为:.【题目点拨】本题主要考查列不等式,解此题的关键在于准确理解题意,设出未知数,找到题中不等关系列出不等式.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)(2)4a6【解题分析】
根据幂的计算法则计算即可.【题目详解】(1)原式=(2)原式=【题目点拨】本题主要考查指数幂的计算,应当熟练掌握,这是基本知识点.19、(1)证明见解析;(2)补图见解析;20°【解题分析】
(1)利用已知得出∠EDO+∠AOD=180°,进而得出答案;(2)利用角平分线的定义结合已知得出∠COF=∠COD=45°,进而得出答案.【题目详解】(1)证明:∵∠EDO与∠1互余,∴∠EDO+∠1=90°,∵OC⊥OD,∴∠COD=90°,∴∠EDO+∠1+∠COD=180°,∴∠EDO+∠AOD=180°,∴ED∥AB;(2)如图所示:∵ED∥AB,∴∠AOF=∠OFD=65°,∵OF平分∠COD,∴∠COF=∠COD=45°,∴∠1=∠AOF-∠COF=20°.【题目点拨】此题主要考查了平行线的判定以及角平分线的作法与定义,正确把握角平分线的作法是解题关键.20、(1)点M(3,3),点B(6,3),点C(3,6),点D(0,3);(2)18.【解题分析】分析:(1)根据正方形的性质结合直角坐标系可得出点M、B、C、D的坐标.(2)通过横坐标:右移加,左移减;纵坐标:上移加,下移减可得点A′、B′、C′、D′,平移后的四边形A′B′C′D′的面积等于原来正方形ABCD的面积,所以算出正方形ABCD的面积即可.详解:(1)根据正方形的性质结合直角坐标系可得:点M(3,3),点B(6,3),点C(3,6),点D(0,3).(2)点M(3,3),平移后的坐标为(﹣4,6),故可得平移是按照:向左平移7个单位,向上平移3个单位进行的,故A′(﹣4,3)、B′(﹣1,6)、C′(﹣4,9)、D′(﹣7,6).AC6,DM3.SACD12ACDM1263S四边形ABCDS四边形ABCD2SACD18.点睛:本题考查了坐标与图形变化-平移.21、-2≤x<3.5【解题分析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【题目详解】∵解不等式①得:x≥-2,解不等式②得:x<3.5,∴不等式组的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 稀土金属冶炼的产业政策分析考核试卷
- 农业废弃物生物质能源的开发利用考核试卷
- 管道工程设计与施工规范考核试卷
- 电力系统通信与网络安全考核试卷
- 江西师范大学《外语教学法》2023-2024学年第二学期期末试卷
- 上海第二工业大学附属龚路中学2025届高考模拟考试卷语文试题试卷含解析
- 西安交通大学《化工原理实验一》2023-2024学年第二学期期末试卷
- 武汉工商学院《商务策划》2023-2024学年第一学期期末试卷
- 文山市重点中学2025届高三下学期期末质量抽测物理试题含解析
- 上海电影艺术职业学院《学前儿童语言教育与活动指导》2023-2024学年第二学期期末试卷
- 中医医疗技术手册2013普及版
- 工程人合伙协议书范本
- 【全球6G技术大会】:2023通感一体化系统架构与关键技术白皮书
- 造纸化学品3课件
- 《电力建设工程起重施工技术规范》
- 小学校教材教辅读物自查自纠排查表
- 诗歌25种表现手法及诗歌鉴赏艺术手法题(二)
- 广东省省级政务信息化(2024年第一批)项目需求-广东省财政厅业务系统运维运营服务(2024年)项目
- 寄拍行业分析
- 培训地坪漆课件
- 电子商务的区块链与加密货币
评论
0/150
提交评论