2024届东北师大附中净月实验学校七年级数学第二学期期末预测试题含解析_第1页
2024届东北师大附中净月实验学校七年级数学第二学期期末预测试题含解析_第2页
2024届东北师大附中净月实验学校七年级数学第二学期期末预测试题含解析_第3页
2024届东北师大附中净月实验学校七年级数学第二学期期末预测试题含解析_第4页
2024届东北师大附中净月实验学校七年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届东北师大附中净月实验学校七年级数学第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.将3x(a﹣b)﹣9y(b﹣a)因式分解,应提的公因式是()A.3x﹣9y B.3x+9y C.a﹣b D.3(a﹣b)2.若是方程的解,则等于()A.4 B.3.5 C.2 D.13.一个等腰三角形的两边长分别为4,8,则它的周长为().A.12 B.16 C.16或20 D.204.变量x与y之间的关系是y=﹣x2+1,当自变量x=2时,因变量y的值是()A.﹣2 B.﹣1 C.1 D.25.方程组的解是()A. B.C. D.6.在装有个红球和个黑球的袋子里,摸出一个黑球是一个()A.可能事件 B.不可能事件 C.随机事件 D.必然事件7.甲,乙两人沿相同的路线由地到地匀速前进,,两地间的路程为.他们前进的路程为,甲出发后的时间为,甲,乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是()A.甲的速度是 B.乙出发后与甲相遇C.乙的速度是 D.甲比乙晚到地8.下列各数中是无理数的是()A. B. C. D.3.149.已知,下列式子不成立的是A. B. C. D.如果,那么10.下列实数中是无理数的是()A.227 B.0 C.8 D.11.规定:(a>0,a≠1,b>0)表示a,b之间的一种运算,现有如下的运算法则:=n,=(a>0,a≠1,N>0,N≠1,M>0).例如:=3,log=,则=()A. B. C.2 D.312.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.6二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知某组数据的频数为56,频率为0.7,则样本容量为_____.14.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm15.已知a+b=4,则a2-b2+8b=___.16.小霞同学所居住的小区积极响应总书记提出的普遍推行垃圾分类制度,设立三种颜色的垃圾桶:红色,代表有害物质;绿色,代表厨余垃圾;蓝色,代表可回收再利用垃圾.注重垃圾分类的小霞同学应该将纸箱子投入_______色垃圾桶内(填“红”、“绿”或“蓝”).17.小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)(1)2019年4月,中国新闻出版研究院发布了《第十六次全国国民阅读调查报告》,以下是小明根据该报告提供的数据制作的“年我国未成年人图书阅读率统计图”的一部分.报告中提到,2018年9-13周岁少年儿童图书阅读率比2017年提高了3.1个百分点,2017年我国0-17周岁未成年人图书阅读率为84.8%.根据以上信息解决下列问题:①写出图1中a的值;②补全图1;(2)读书社的小明在搜集资料的过程中,发现了《人民日报》曾经介绍过多种阅读法,他在班上同学们介绍了其中6种,并调查了全班40名同学对这6种阅读法的认可程度,制作了如下的统计表和统计图:根据以上信息解决下列问题:①补全统计表及图2;②根据调查结果估计全年级500名同学最愿意使用“.精华提炼法”的人数.19.(5分)如图,在平面直角坐标系中,已知长方形ABCD的两个顶点A(2,-1),C(6,2)。点M为y轴上一点,△MAB的面积为6,且MD<MA。请解答下列问题:(1)顶点B的坐标为;(2)将长方形ABCD平移后得到,若,则的坐标为;(3)求点M的坐标。20.(8分)解不等式组,并写出该不等式组的最大整数解.21.(10分)4月9日上午8时,2017徐州国际马拉松赛鸣枪开跑,一名岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.22.(10分)如图,在中,是边上的高,是的平分线.(1)若,,求的度数;(2)若,,求的度数(用含,的式子表示)(3)当线段沿方向平移时,平移后的线段与线段交于点,与交于点,若,,求与、的数量关系.23.(12分)利用幂的运算性质进行计算:.

参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、D【解题分析】

原式变形后,找出公因式即可.【题目详解】将3x(a−b)−9y(b−a)=3x(a−b)+9y(a−b)因式分解,应提的公因式是3(a−b).故答案选D.【题目点拨】本题考查的知识点是因式分解-提公因式法,解题的关键是熟练的掌握因式分解-提公因式法.2、D【解题分析】

根据二元一次方程组的解的定义,把方程组的解代入方程组,求解得到a、b的值,然后代入代数式进行计算即可得解.【题目详解】解:根据题意,①+②,得;∴.故选D.【题目点拨】本题考查了二元一次方程组的解的定义,把方程组的解代入方程组求出a、b的值是解题的关键.3、D【解题分析】

由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析,然后根据三角形三边关系进行判断.【题目详解】解:①当4为腰时,4+4=8,故此种情况不存在;

②当8为腰时,8-4<8<8+4,符合题意.

故此三角形的周长=8+8+4=1.

故选:D.【题目点拨】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.4、B【解题分析】

把自变量x的值代入函数解析式进行计算即可得解.【题目详解】把x=2代入y=﹣x2+1中得:y=-1.故选B.【题目点拨】考查了函数值的求解,是基础题,准确计算是解题的关键.5、C【解题分析】

利用加减消元法消去x,求出y的值,再代入求出x的值.【题目详解】解:,①×7得,21x+28y=35③,②×3得,-21x+27y=-④,③+④得,55y=,则y=,将y=代入①得,3x+2=5,则x=1,∴方程组的解为:.故选:C.【题目点拨】本题考查了二元一次方程组的解法,熟练掌握消元法是解题关键.6、C【解题分析】

根据可能事件、不可能事件、随机事件、必然事件的定义解答即可.【题目详解】∵在装有个红球和个黑球的袋子里,摸出一个球可能是红球,也可能是黑球,∴摸出一个黑球是一个随机事件.故选C.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【解题分析】

A,B两地路程为40千米,由图象可得甲乙所用时间,从而可求得甲和乙的速度以及甲比乙晚到的时间;利用追及问题关系可求得甲乙相遇的时间.【题目详解】解:已知A,B两地间的路程为40km,由图可知,从A地到B,甲用时4小时,乙用时2-1=1小时

∴甲的速度为40÷4=10km/h,故A正确;

乙的速度为40÷1=40km/h,故C选项正确;

设乙出发t小时后与甲相遇,则40t=10(t+1)

∴t=,故B选项错误;

由图可知,甲4小时到达B地,乙2小时到达B地,从而甲比乙晚到2小时,故D正确.

故选B.【题目点拨】本题考查了一次函数的应用,利用数形结合进行分析,是解决本题的关键.8、A【解题分析】

根据无理数的定义(无理数是指无限不循环小数)进行判断即可.【题目详解】A.是无理数,故本选项正确;B.=2不是无理数,是有理数,故本选项错误;C.=2,是有理数,不是无理数,故本选项错误;D.3.14不是无理数,故本选项错误;故选A【题目点拨】此题考查无理数,难度不大9、D【解题分析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.解:A、不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意;B、不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C、不等式两边同时乘以,不等号方向改变,故本选项正确,不符合题意;D、不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意.故选D.10、C【解题分析】

根据无理数的定义即可判断.【题目详解】A.227为分数,故错误;B.0为整数,故错误;C.8=22,为无理数,正确;D.25=5,为整数,故错误选C.【题目点拨】此题主要考查无理数的定义,解题的关键是熟知无理数的分类.11、A【解题分析】

先根据定义的运算法则进行变形,再利用规定公式计算即可.【题目详解】解:==.故选A.【题目点拨】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.12、C【解题分析】

先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【题目详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【题目点拨】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、1【解题分析】

根据频数÷频率=总数解答即可.【题目详解】​解:样本容量为:56÷0.7=1.故答案为1.【题目点拨】本题考查了频数与频率的关系,解答时抓住:频数÷频率=总数,以此来解答即可.14、5【解题分析】

过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.【题目详解】如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE=Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△QC为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.【题目点拨】本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.15、16【解题分析】

利用平方差公式a2-b2=(a-b)(a+b),进行变形求解.【题目详解】∵a+b=4,∴a2-b2+8b=(a-b)(a+b)+8b=4(a-b)+8b=4a+4b=4(a+b)=16【题目点拨】此题主要考查平方差公式的应用,解题的关键是熟知平方差公式的变形运用.16、蓝【解题分析】

根据纸箱子是回收再利用垃圾可得答案.【题目详解】根据题意可知,纸箱子属于可回收再利用垃圾,注重垃圾分类的小霞同学应该将纸箱子投入蓝色垃圾桶内.故答案:蓝【题目点拨】本题考查垃圾分类问题,在实际生活中多学习垃圾分类知识,平时投放垃圾时,也一定要注意垃圾分类.17、【解题分析】

根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率.【题目详解】设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,

其中阴影部分面积为:2+2+3+3=10,

则投中阴影部分的概率为:=.

故答案为:.【题目点拨】本题考查几何概率,解题的关键是熟练掌握几何概率的求法.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)①:96.3%,②见解析;(2)①见解析;②125人【解题分析】

(1)①用2017年9-13周岁少年儿童图书阅读率加上3.1个百分点即可得到结果②根据题目所给条件补图即可;(2)①先求出统计表中的人数,再标出划记,最后补充好扇形统计图即可;②用样本估计总体即可得解.【题目详解】(1)①的值为93.2%+3.1%=96.3%.②补图如下.(2)①表中使用“D.精华提炼法”的人数为:40-4-5-8-6-7=10人.字斟句酌法所占比例为:8÷40=20%,.精华提炼法所占比例为:10÷40=25%,补全统计图②所以根据调查结果估计全年级500名同学最愿意使用“D.精华提炼法”的人数为125人.【题目点拨】本题考查扇形统计图、统计表、用样本估计总体、众数的定义的运用,解题的关键是明确题意,找出所求问题需要的条件.19、(1)(6,-1)(2)(3,-2)(3)(0,2)【解题分析】分析:(1)根据矩形的性质,以及A、C两点的坐标即可解决问题;

(2)由平移后A1的坐标判断出平移的方式,然后根据平移的方式求出C1的坐标;(3)设△MAB的高为h,根据题意得:,求出h的值,进而可求出点M的坐标;

详解:(1)∵点A(2,-1),∴点B的纵坐标为-1.∵C(6,2),∴点B的横坐标为6,∴B(6,-1);(2)∵长方形ABCD平移后得到,,∴长方形ABCD向左平移了3个单位,向下平移了4个单位,∴的坐标为(3,-2)(3)(0,2)设△MAB的高为h,根据题意得:所以h=3由于MD<MA所以M(0,2)点睛:本题考查了坐标与图形,坐标平面内的平移变化,三角形的而面积公式,熟练掌握平移的性质是解答本题的关键;在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.20、﹣2,﹣1,0【解题分析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:,解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,21、今年妹妹6岁,哥哥10岁.【解题分析】

试题分析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.试题解析:设今年妹妹的年龄为x岁,哥哥的年龄为y岁,根据题意得:解得:.答:今年妹妹6岁,哥哥10岁.考点:二元一次方程组的应用.22、(1)∠DCE=18°;;(2)(β-α);(3)∠HGE=(β-α).【解题分析】

(1)根据三角形的内角和得到∠ACB=64°,根据角平分线的定义得到∠ECB=∠ACB=32°,根据余角的定义得到∠DCE=90°-∠DEC=184°,于是得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论