广东省江门市蓬江区荷塘中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含解析_第1页
广东省江门市蓬江区荷塘中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含解析_第2页
广东省江门市蓬江区荷塘中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含解析_第3页
广东省江门市蓬江区荷塘中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含解析_第4页
广东省江门市蓬江区荷塘中学2023-2024学年九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省江门市蓬江区荷塘中学2023-2024学年九年级数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<22.如图,将△ABC绕着点A顺时针旋转30°得到△AB′C′,若∠BAC′=80°,则∠B′AC=()‘A.20° B.25° C.30° D.35°3.如图,正五边形ABCD内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是()A.①③④ B.①②③ C.①②④ D.①②③④4.下列说法正确的是()A.三点确定一个圆B.同圆中,圆周角等于圆心角的一半C.平分弦的直径垂直于弦D.一个三角形只有一个外接圆5.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个 B.16个 C.20个 D.30个6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=ADC.AB=AF D.BE=AD﹣DF7.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上8.若⊙O的弦AB等于半径,则AB所对的圆心角的度数是()A.30° B.60° C.90° D.120°9.如图,是的边上的一点,下列条件不可能是的是()A. B.C. D.10.如图,在正方形网格中,线段A′B′是线段AB绕某点顺时针旋转一定角度所得,点A′与点A是对应点,则这个旋转的角度大小可能是()A.45° B.60° C.90° D.135°11.二次函数的图象的顶点坐标是()A. B. C. D.12.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:]二、填空题(每题4分,共24分)13.如图,直线y1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是______.14.如图,矩形中,,将矩形按如图所示的方式在直线上进行两次旋转,则点在两次旋转过程中经过的路径的长是(结果保留)____________.15.反比例函数的图象在每一象限内,y随着x的增大而增大,则k的取值范围是______.16.⊙O的半径为10cm,点P到圆心O的距离为12cm,则点P和⊙O的位置关系是_____.17.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).18.如图,是某同学制作的一个圆锥形纸帽的示意图,则围成这个纸帽的纸的面积为______.三、解答题(共78分)19.(8分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N,若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D、F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.20.(8分)如图,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD的各边中点,若AB=x,四边形EFGH的面积为y.(1)请直接写出y与x之间的函数关系式;(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.21.(8分)如图,AB为⊙O的直径,AC是弦,D为线段AB延长线上一点,过C,D作射线DP,若∠D=2∠CAD=45º.(1)证明:DP是⊙O的切线.(2)若CD=3,求BD的长.22.(10分)根据2019年莆田市初中毕业升学体育考试内容要求,甲、乙、丙在某节体育课他们各自随机分别到篮球场A处进行篮球运球绕杆往返训练或到足球场B处进行足球运球绕杆训练,三名学生随机选择其中的一场地进行训练.(1)用列表法或树形图表示出的所用可能出现的结果;(2)求甲、乙、丙三名学生在同一场地进行训练的概率;(3)求甲、乙、丙三名学生中至少有两人在B处场地进行训练的概率.23.(10分)已知:如图,AE∥CF,AB=CD,点B、E、F、D在同一直线上,∠A=∠C.求证:(1)AB∥CD;(2)BF=DE.24.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的长.25.(12分)某超市销售一种饮料,每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?26.如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.2、A【解析】根据图形旋转的性质,图形旋转前后不发生任何变化,对应点旋转的角度即是图形旋转的角度,可直接得出∠C′AC=30°,由∠BAC′=80°可得∠BAC=∠B′AC′=50°,从而可得结论.【详解】由旋转的性质可得,∠BAC=∠B′AC′,∵∠C′AC=30°,∴∠BAC=∠B′AC′=50°,∴∠B′AC=20°.故选A.【点睛】此题主要考查了旋转的性质,图形旋转前后不发生任何变化,这是解决问题的关键.3、B【分析】根据圆的正多边形性质及圆周角与弦的关系解题即可.【详解】解:①∴BC∥AD,故本选项正确;②∵BC=CD=DE,∴∠BAC=∠CAD=∠DAE,∴∠BAE=3∠CAD,故本选项正确;③在△BAC和△EAD中,BA=AE,BC=DE,∠B=∠E,∴△BAC≌△EAD(SAS),故本选项正确;④∵AB+BC>AC,∴2CD>AC,故本选项错误.故答案为①②③.【点睛】此题考查圆的正多边形性质及圆周角与弦的关系,理解定义是关键.4、D【分析】由垂径定理的推论、圆周角定理、确定圆的条件和三角形外心的性质进行判断【详解】解:A、平面内不共线的三点确定一个圆,所以A错误;B、在同圆或等圆中,同弧所对的圆周角等于它所对的圆心角的一半,所以B错误;C、平分弦(非直径)的直径垂直于弦,所以C错误;D、一个三角形只有一个外接圆,所以D正确.故答案为D.【点睛】本题考查了垂径定理、圆周角定理以及确定圆的条件,灵活应用圆的知识是解答本题的关键.5、A【解析】∵共摸了40次,其中10次摸到黑球,∴有10次摸到白球.∴摸到黑球与摸到白球的次数之比为1:1.∴口袋中黑球和白球个数之比为1:1.∴4×1=12(个).故选A.考点:用样本估计总体.6、B【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;故选B.7、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点8、B【解析】试题分析:∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°.故选B.【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.9、B【分析】根据相似三角形的判定判断各选项即可进行解答.【详解】解:A、∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,故本选项不符合题意;B、∵,缺少夹角相等,∴不可判定△ACP∽△ABC,故本选项符合题意;C、∵∠APC=∠ACB,∠A=∠A,∴△ACP∽△ABC,故本选项不符合题意;D、∵,∠A=∠A,∴△ACP∽△ABC,故本选项不符合题意.故选:B.【点睛】本题考查相似三角形的判定.要找的对应边与对应角,公共角是很重要的一个量,要灵活加以利用.10、C【分析】如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.【详解】解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角,∴旋转角为90°故选:C.【点睛】本题考查了图形的旋转,掌握作图的基本步骤是解题的关键11、B【分析】根据二次函数的性质,用配方法求出二次函数顶点式,再得出顶点坐标即可.【详解】解:∵抛物线

=(x+1)2+3

∴抛物线的顶点坐标是:(−1,3).

故选B.【点睛】此题主要考查了利用配方法求二次函数顶点式以及求顶点坐标,此题型是考查重点,应熟练掌握.12、D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象二、填空题(每题4分,共24分)13、x≤﹣6或0<x≤1【解析】当y1≤y1时,x的取值范围就是当y1的图象与y1重合以及y1的图象落在y1图象的下方时对应的x的取值范围.【详解】根据图象可得当y1≤y1时,x的取值范围是:x≤-6或0<x≤1.故答案为x≤-6或0<x≤1.【点睛】本题考查了反比例函数与一次函数图象的交点问题,理解当y1≤y1时,求x的取值范围就是求当y1的图象与y1重合以及y1的图象落在y1图象的下方时对应的x的取值范围,解答此题时,采用了“数形结合”的数学思想.14、【分析】根据勾股定理求出BD的长,点B旋转所经过的路径应是弧线,根据公式计算即可.【详解】如图,∵,∴,由旋转得:,,,,点B两次旋转所经过的路径长为=.故答案为:.【点睛】此题考查弧长公式,熟记公式,明确各字母代表的含义并正确代入公式进行计算即可15、【分析】利用反比例函数图象的性质即可得.【详解】由反比例函数图象的性质得:解得:.【点睛】本题考查了反比例函数图象的性质,对于反比例函数有:(1)当时,函数图象位于第一、三象限,且在每一象限内,y随x的增大而减小;(2)当时,函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大.16、点P在⊙O外【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵⊙O的半径r=10cm,点P到圆心O的距离OP=12cm,∴OP>r,∴点P在⊙O外,故答案为点P在⊙O外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.17、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.18、【分析】根据已知得出圆锥的底面半径为10cm,圆锥的侧面积=π×底面半径×母线长,即可得出答案.【详解】解:底面圆的半径为10,则底面周长=10π,

侧面面积=×10π×30=300πcm1.

故答案为:300πcm1.【点睛】本题主要考查了圆锥的侧面积公式,掌握圆锥侧面积公式是解决问题的关键,此问题是中考中考查重点.三、解答题(共78分)19、(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【解析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•xN﹣BG•xM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知,解得:,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为xM,N点的横坐标为xN,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)-BG•(xM-1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,则xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),(a)当△PCD∽△FOP时,,∴,∴t2﹣(1+m)t+2=0①;(b)当△PCD∽△POF时,,∴,∴t=(m+1)②;(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程②有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN的面积求得点N与点M的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.20、(1)y=-x2+3x;(2)当x=3时,y有最大值,为4.5.【解析】分析:(1)由矩形的周长为12,AB=x,结合矩形的性质可得BC=6-x,然后由E,F,G,H为矩形ABCD的各边中点可得四边形EFGH的面积是矩形面积的一半,从而列出函数关系式;(2)由关系式为二次函数以及二次项系数小于0可得四边形EFGH的面积有最大值,然后利用配方法将抛物线的解析式写成顶点式,从而得到x取什么值时,y取得最大值,以及最大值是多少.详解:(1)∵矩形ABCD的周长为12,AB=x,∴BC=×12-x=6-x.∵E,F,G,H为矩形ABCD的各边中点,∴y=x(6-x)=-x2+3x,即y=-x2+3x.(2)y=-x2+3x=-(x-3)2+4.5,∵a=-<0,∴y有最大值,当x=3时,y有最大值,为4.5.点睛:本题是一道有关二次函数应用的题目,解题的关键是依据矩形的性质结合已知列出二次函数关系式,然后利用二次函数的最值解决问题.21、(1)见解析;(2)【分析】(1)连接OC,根据等腰三角形的性质,三角形的内角和与外角的性质,证得∠OCD=90°,即可证得DP是⊙O的切线;(2)根据等腰直角三角形的性质得OB=OC=CD=3,而∠OCD=90º,最后利用勾股定理进行计算即可.【详解】(1)证明:连接OC,

∵OA=OC,

∴∠CAD=∠ACO,

∴∠COD=2∠CAD=45°,

∵∠D=2∠CAD=45º,∴∠OCD=180°-45°-45°=90°,

∴OC⊥CD,∴DP是⊙O的切线;(2)由(1)可知∠CDO=∠COD=45º∴OB=OC=CD=3∵∠OCD=90º∴,∴BD=OD-OB=【点睛】本题考查了切线的性质,等腰三角形的判定与性质,勾股定理,熟练掌握切线的性质是解题的关键.22、(1)共有8种可能;(2);(3)【分析】(1)用树状图分3次实验列举出所有情况即可;

(2)看3人在同一场地进行训练的情况数占总情况数的多少即可;

(3)看至少有两人在处场地进行训练的情况数占总情况数的多少即可.【详解】(1)由上树状图可知甲、乙、丙三名学生进行体育训练共有8种可能,(2)所有出现情况等可能,其中甲、乙、丙三名学生在同一场地进行训练有2种可能并把它记为事件A,则P(A)=(3)其中甲、乙、1丙三名学生中至少有两人在B处场地进行训练有4种可能并把它记为事件B,则P(B)=【点睛】此题考查列表法与画树状图法,解题关键在于掌握概率=所求情况数与总情况数之比.23、(1)见解析;(2)见解析.【解析】(1)由△ABE≌△CDF可得∠B=∠D,就可得到AB∥CD;(2)要证BF=DE,只需证到△ABE≌△CDF即可.【详解】解:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴∠B=∠D,∴AB∥CD;(2)∵△ABE≌△CDF,∴BE=DF.∴BE+EF=DF+EF,∴BF=DE.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.24、(1)见解析(2)AF=2【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论