




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省揭阳真理中学2023-2024学年数学九年级第一学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.关于x的一元二次方程有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.2.如图,在Rt△ABC中,∠C=Rt∠,则cosA可表示为(
)A. B. C. D.3.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对4.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.8 B.16 C.24 D.325.如图,的顶点均在上,若,则的度数为()A. B. C. D.6.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A. B. C. D.17.把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:18.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动 B.把剪影向投影灯方向移动C.把剪影向银幕方向移动 D.把银幕向投影灯方向移动9.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(
)A.4 B.3 C.2 D.10.二次函数(,,为常数,且)中的与的部分对应值如下表:以下结论:①二次函数有最小值为;②当时,随的增大而增大;③二次函数的图象与轴只有一个交点;④当时,.其中正确的结论有()个A. B. C. D.二、填空题(每小题3分,共24分)11.平面直角坐标系xOy中,若点P在曲线y=上,连接OP,则OP的最小值为_____.12.若关于x的一元二次方程有两个相等的实数根,则m的值为_________.13.如图,,如果,,,那么___________.14.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为________.15.方程的根是___________.16.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为,六月份的营业额为万元,那么关于的函数解式是______.17.如图,已知的面积为48,将沿平移到,使和重合,连结交于,则的面积为__________.18.如图,五边形是正五边形,若,则__________.三、解答题(共66分)19.(10分)已知,如图,斜坡的坡度为,斜坡的水平长度为米.在坡顶处的同一水平面上有一座信号塔,在斜坡底处测得该塔的塔顶的仰角为,在坡项处测得该塔的塔顶的仰角为.求:坡顶到地面的距离;信号塔的高度.(,结果精确到米)20.(6分)某商店经销一种销售成本为每千克40元的水产品,规定试销期间销售单价不低于成本价.据试销发现,月销量(千克)与销售单价(元)符合一次函数.若该商店获得的月销售利润为元,请回答下列问题:(1)请写出月销售利润与销售单价之间的关系式(关系式化为一般式);(2)在使顾客获得实惠的条件下,要使月销售利润达到8000元,销售单价应定为多少元?(3)若获利不高于,那么销售单价定为多少元时,月销售利润达到最大?21.(6分)某超市销售一种饮料,每瓶进价为元,当每瓶售价元时,日均销售量瓶.经市场调查表明,每瓶售价每增加元,日均销售量减少瓶.(1)当每瓶售价为元时,日均销售量为瓶;(2)当每瓶售价为多少元时,所得日均总利润为元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?22.(8分)如图,已知中,以为直径的⊙交于,交于,,求的度数.23.(8分)(1)某学校“学习落实”数学兴趣小组遇到这样一个题目:如图1,在中,点在线段上,,,,,求的长.经过数学小组成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图2)请回答:,.(2)请参考以上解决思路,解决问题:如图在四边形中对角线与相交于点,,,,.求的长.24.(8分)今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.25.(10分)如图,反比例函数的图象与一次函数的图象相交于点和点.(1)求反比例函数的解析式和点的坐标;(2)连接,,求的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量的取值范围.26.(10分)如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若∠AFB=2,求的值.(3)若点G在线段BF上,且GF=2BG,连接AG,CG,设=x,四边形AGCE的面积为,ABG的面积为,求的最大值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式的意义得到△>0,即4-4××(-1)>0,则m的取值范围为且.【详解】∵关于x的一元二次方程有两个不相等的实数根,且是一元二次方程.
∴△>0,即4-4××(-1)>0,.
∴且.故选择C.【点睛】本题考查根的判别式和一元二次方程的定义,解题的关键是掌握根的判别式和一元二次方程的定义.2、C【解析】解:cosA=,故选C.3、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.4、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,
∴=0.5,
解得:m=1.
故选:B.【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率.5、D【分析】根据同弧所对圆心角等于圆周角的两倍,可得到∠BOC=2∠BAC,再结合已知即可得到此题的答案.【详解】∵∠BAC和∠BOC分别是所对的圆周角和圆心角,∴∠BOC=2∠BAC.∵∠BAC=35°,∴∠BOC=70°.故选D.【点睛】本题考查了圆周角定理,熟练掌握定理是解题的关键.6、C【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是.故选C.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7、A【分析】设原矩形的长为2a,宽为b,对折后所得的矩形与原矩形相似,则【详解】设原矩形的长为2a,宽为b,
则对折后的矩形的长为b,宽为a,
∵对折后所得的矩形与原矩形相似,
∴,
∴大矩形与小矩形的相似比是:1;
故选A.【点睛】理解好:如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形,相似多边形对应边的比叫做相似比.8、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.
故选:B.【点睛】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.9、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.10、B【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确;②由表格和①可知当x<1时,函数y随x的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数的图象与x轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x轴下方y<0,由表格和③可知,二次函数的图象与x轴的两个交点坐标是(-1,0)和(3,0),∴当时,y<0;故此选项正确;综上:①④两项正确,故选:B.【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.二、填空题(每小题3分,共24分)11、1【分析】设点P(a,b),根据反比例函数图象上点的坐标特征可得=18,根据=,且≥2ab,可求OP的最小值.【详解】解:设点P(a,b)∵点P在曲线y=上,∴=18∵≥0,∴≥2ab,∵=,且≥2ab,∴≥2ab=31,∴OP最小值为1.【点睛】本题考查了反比例函数图象上点的坐标特征,灵活运用≥2ab是本题的关键.12、0【分析】根据一元二次方程根的判别式的正负判断即可.【详解】解:原方程可变形为,由题意可得所以故答案为:0【点睛】本题考查了一元二次方程,掌握根的判别式与一元二次方程的根的情况是解题的关键.13、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,
∴,即,
∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.14、【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7,所以小红第二次取出的数字能够整除第一次取出的数字的概率=.故答案为.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.15、,.【解析】试题分析:,∴,∴,.故答案为,.考点:解一元二次方程-因式分解法.16、或【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出五月份的营业额,再根据题意表示出六月份的营业额,即可列出方程求解.【详解】解:设增长率为x,则五月份的营业额为:,六月份的营业额为:;故答案为:或.【点睛】本题考查了一元二次方程的应用中增长率问题,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)1.增长用“+”,下降用“”.17、24【解析】根据平移变换只改变图形的位置,不改变图形的形状与大小,可得∠B=∠A´CC´,BC=B´C´,再根据同位角相等,两直线平行可得CD∥
AB,然后求出CD=AB,点C"到A´B´的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.也可用相似三角形的面积比等于相似比的平方来求.【详解】解:根据题意得
∠B=∠A´CC´,BC=B´C´,
∴CD//AB,CD=AB(三角形的中位线),
点C´到A´C´的距离等于点C到AB的距离,∴△CDC´的面积=△ABC的面积,=×48
=24
故答案为:24【点睛】本题考查的是三角形面积的求法之一,等高的三角形的面积比等于底的比,也可用相似三角形的面积比等于相似比的平方来求得.18、72【解析】分析:延长AB交于点F,根据得到∠2=∠3,根据五边形是正五边形得到∠FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,∵,∴∠2=∠3,∵五边形是正五边形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.三、解答题(共66分)19、(1)10米;(2)33.1米.【分析】(1)首先作于,延长交于,然后根据斜坡的坡度和水平长度即可得出坡顶到地面的距离;(2)首先设米,在中,解得AC,然后在中,利用构建方程,即可得出BC.【详解】作于,延长交于,则四边形为矩形,,∵斜坡的坡度为,斜坡的水平长度为米,,即坡项到地面的距离为米;设米,在中,,即,解得,在中,,,即解得,,(米)答:塔的高度约为米.【点睛】此题主要考查解直角三角形的实际应用,熟练掌握,即可解题.20、(1)W=﹣10x2+1400x﹣40000;(2)销售单价应定为1元;(3)销售单价定为2元时,月销售利润达到最大.【分析】(1)根据总利润=每千克的利润×月销量,即可求出月销售利润与销售单价之间的关系式,然后化为一般式即可;(2)将=800代入(1)的关系式中,求出x即可;(3)根据获利不高于,即可求出x的取值范围,然后根据二次函数的增减性,即可求出当月销售利润达到最大时,销售单价的定价.【详解】解:(1)根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1000x+400x﹣40000=﹣10x2+1400x﹣40000;(2)当W=﹣10x2+1400x﹣40000=8000时,得到x2﹣140x+4800=0,解得:x1=1,x2=80,∵使顾客获得实惠,∴x=1.答:销售单价应定为1元.(3)W=-10x2+1400x﹣40000=-10(x﹣70)2+9000∵获利不得高于70%,即x﹣40≤40×70%,∴x≤2.∵-10<0,对称轴为直线x=70∴当x≤2时,y随x的增大而增大∴当x=2时,W最大=891.答:销售单价定为2元时,月销售利润达到最大.【点睛】此题考查的是二次函数是应用,掌握实际问题中的等量关系、二次函数和一元二次方程的关系和利用二次函数的增减性求值是解决此题的关键.21、(1);(2)元或元;(3)元时利润最大,最大利润元【分析】(1)当每瓶售价为元时,每瓶售价增加1元,日均销售量减少80瓶,即可求解.(2)设每瓶售价为x元,根据题意表示出每瓶利润,日销售量,根据等量关系列方程解答即可.(3)设每瓶售价为a元,日均总利润为y元,求出y关于a的函数表达式,配方即可求解.【详解】(1)当每瓶售价为元时,每瓶售价增加1元,日均销售量减少80瓶,560-80=480瓶故答案为:480(2)设每瓶售价为x元时,所得日均总利润为元,根据题意得:解得:x1=12,x2=14答:当每瓶的售价为12元或14元时,所得日均总利润为元.(3)设每瓶售价为a元,日均总利润为y元,根据题意得:答:每瓶售价为13元时利润最大,最大利润1280元.【点睛】本题考查的是一元二次方程及二次函数的利润问题,解题关键在于对利润问题中等量关系的把握,由于计算量颇大,所以计算时要细心,避免出错.22、40°【分析】连接AE,判断出AB=AC,根据∠B=∠C=70°求出∠BAC=40°,再根据同弧所对的圆周角等于圆心角的一半,求出∠DOE的度数.【详解】解:连接∵是⊙的直径.∴,∴,∵,∴∴∴,∴.【点睛】本题考查了等腰三角形的性质和圆周角定理,把圆周角转化为圆心角是解题的关键.23、(1),;(2)【分析】(1)
根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠
ADB,由等角对等边可得出;
(2)
过点B作BE∥
AD交AC于点E,同(1)
可得出AE,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1),.又,.,故答案为:;.(2)过点作交于点,如图所示.,.,在中,,即,解得:在中,.【点睛】本题考查了平行线的性质、相似三角形性质及勾股定理,构造相似三角形是解题的关键,利用勾股定理进行计算是解决本题的难点.24、(1)不可能;随机;;(2)【解析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度黑龙江省气象部门高校毕业生招聘4人(第三批次气象类)考前自测高频考点模拟试题附答案详解(完整版)
- 2025北京华商电力产业发展有限公司2025年搞笑毕业生招聘29人(第三批)考前自测高频考点模拟试题及答案详解(易错题)
- 2025年上海市第一人民医院酒泉医院自主招聘专业技术人员30人考前自测高频考点模拟试题带答案详解
- 2025江西吉安市直三家公立医院编外招聘33人模拟试卷及答案详解(全优)
- 2025年氨纶锦纶包覆丝项目合作计划书
- 2025黑龙江绥化望奎县事业单位招聘71人模拟试卷及1套完整答案详解
- 2025湖南湘江爱乐乐团招聘考前自测高频考点模拟试题及答案详解(夺冠)
- 2025贵州茅台酒股份有限公司高层次人才(博士研究生)引进14人模拟试卷及一套答案详解
- 2025春季河南新乡工商职业学院招聘考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年临沂市工业学校公开招聘教师(40名)模拟试卷带答案详解
- 跨境电商股权分配协议范文
- 2025年深圳中考化学试卷真题(含答案)
- 三甲医院影像科管理制度
- T/CCAS 015-2020水泥助磨剂应用技术规范
- 江苏省南京市2024-2025学年高二物理上学期10月月考试题
- 2025年入团考试时事热点及试题与答案
- TSG D2002-2006燃气用聚乙烯管道焊接技术规则
- 会计工作规范与行业标准研究计划
- GB/T 320-2025工业用合成盐酸
- 深基坑工程监理实施细则
- 2024年公路水运工程助理试验检测师《水运结构与地基》考前必刷必练题库500题(含真题、必会题)
评论
0/150
提交评论