河北省廊坊市安次区2024届数学八下期末学业水平测试模拟试题含解析_第1页
河北省廊坊市安次区2024届数学八下期末学业水平测试模拟试题含解析_第2页
河北省廊坊市安次区2024届数学八下期末学业水平测试模拟试题含解析_第3页
河北省廊坊市安次区2024届数学八下期末学业水平测试模拟试题含解析_第4页
河北省廊坊市安次区2024届数学八下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊市安次区2024届数学八下期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,设线段AC=1.过点C作CD⊥AC,并且使CD=AC:连结AD,以点D为圆心,DC的长为半径画弧,交AD于点E;再以点A为圆心,AE的长为半径画弧,交AC于点B,则AB的长为()A. B. C. D.2.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.标准差 C.中位数 D.众数3.如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为()A. B. C. D.4.要使分式有意义,则x应满足()A.x≠﹣1 B.x≠2 C.x≠±1 D.x≠﹣1且x≠25.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个7.一元二次方程4x2+1=3x的根的情况是(

)A.没有实数根

B.只有一个实数根

C.有两个相等的实数根

D.有两个不相等的实数根8.如图,在四边形中,,点分别为线段上的动点(含端点,但点不与点重合),点分别为的中点,则长度的最大值为()A. B. C. D.9.已知y=m+3xm2-8是正比例函数,则A.8 B.4 C.±3 D.310.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为A.6 B.5 C.4 D.311.已知关于x的函数y=k(x-1)和y=(k≠0),它们在同一坐标系内的图象大致是()A. B. C. D.12.小明骑自行车到公园游玩,匀速行驶一段路程后,开始休息,休息了一段时间后,为了尽快赶到目的地,便提高了,车速度,很快到达了公园.下面能反映小明离公园的距离(千米)与时间(小时)之间的函数关系的大致图象是()A. B. C. D.二、填空题(每题4分,共24分)13.若分式的值为0,则的值是_____.14.在正方形ABCD中,对角线AC=2cm,那么正方形ABCD的面积为_____.15.2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.16.一粒米的重量约为0.000036克,用科学记数法表示为_____克.17.在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.18.若点位于第二象限,则x的取值范围是______.三、解答题(共78分)19.(8分)问题提出:(1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.问题探究:(2)如图3,在(1)的条件下,若,,且,,①求的度数.②过点A作直线,交直线于点E,.请求出线段的长.20.(8分)如图,四边形的对角线,交于点,、是上两点,,,.(1)求证:四边形是平行四边形.(2)当平分时,求证:.21.(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求与的函数关系式,并写出的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(10分)如图,直线与坐标轴交于点、两点,直线与直线相交于点,交轴于点,且的面积为.(1)求的值和点的坐标;(2)求直线的解析式;(3)若点是线段上一动点,过点作轴交直线于点,轴,轴,垂足分别为点、,是否存在点,使得四边形为正方形,若存在,请求出点坐标,若不存在,请说明理由.23.(10分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.24.(10分)在校园手工制作活动中,甲、乙两人接到手工制作纸花任务,已知甲每小时制作纸花比乙每小时制作纸花少20朵,甲制作120朵纸花的时间与乙制作160朵纸花的时间相同(1)求甲、乙两人每小时各制作纸花多少朵?(2)本次活动学校需要该种纸花不少于350朵,若由甲、乙两人共同制作,则至少需要几小时完成任务?25.(12分)如图1,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM与BD相交于F.(1)直接写出线段OE与OF的数量关系;(2)如图2,若点E在AC的延长线上,过点A作AM⊥BE,AM交DB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;(3)如图3,当BC=CE时,求∠EAF的度数.26.某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.(1)此次抽样调查的样本容量是_________;(2)写出表中的a=_____,b=______,c=________;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

根据勾股定理求得AD的长度,则AB=AE=AD-CD.【题目详解】解:如图,AC=1,CD=AC=,CD⊥AC,∴由勾股定理,得AD=,又∵DE=DC=,∴AB=AE=AD-CD=-=,故选:B.【题目点拨】本题考查了勾股定理.根据勾股定理求得斜边AD的长度是解题的关键.2、B【解题分析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.3、B【解题分析】

根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,根据三角形的内角和即可得到结论.【题目详解】解:在正方形中,∠DAC=∠ACD=45∘,由作图知,∠CAP=∠DAP=22.5°,∴∠P=180°−∠ACP−∠CAP=22.5°,故选B.【题目点拨】本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.4、D【解题分析】试题分析:当(x+1)(x-2)时分式有意义,所以x≠-1且x≠2,故选D.考点:分式有意义的条件.5、B【解题分析】

根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【题目详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【题目点拨】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.6、A【解题分析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【题目详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【题目点拨】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.7、A【解题分析】

先求出△的值,再判断出其符号即可.【题目详解】解:原方程可化为:4x2﹣3x+1=0,∵△=32﹣4×4×1=-7<0,∴方程没有实数根.故选A.8、B【解题分析】

连接BD、ND,由勾股定理得可得BD=5,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.【题目详解】连接BD、ND,由勾股定理得,BD==5∵点E、F分别为DM、MN的中点,∴EF=DN,当DN最长时,EF长度的最大,∴当点N与点B重合时,DN最长,∴EF长度的最大值为BD=2.5,故选B.【题目点拨】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.9、D【解题分析】

直接利用正比例函数的定义分析得出即可.【题目详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【题目点拨】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.10、B【解题分析】

设,由翻折的性质可知,则,在中利用勾股定理列方程求解即可.【题目详解】解:设,由翻折的性质可知,则.是BC的中点,.在中,由勾股定理得:,即,解得:..故选:B.【题目点拨】本题主要考查的是翻折的性质、勾股定理的应用,由翻折的性质得到,,从而列出关于x的方程是解题的关键.11、A【解题分析】若k>0时,反比例函数图象经过二四象限;一次函数图象经过一三四象限;若k<0时,反比例函数经过一三象限;一次函数经过二三四象限;由此可得只有选项A正确,故选A.12、C【解题分析】

根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【题目详解】A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选C.【题目点拨】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.二、填空题(每题4分,共24分)13、1【解题分析】

分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.【题目详解】∵分式的值为0,∴,∴x=1.故答案是:1.【题目点拨】考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.14、2【解题分析】

根据正方形的面积公式可求正方形面积.【题目详解】正方形面积==2故答案为2.【题目点拨】本题考查了正方形的性质,利用正方形的面积=对角线积的一半解决问题.15、9【解题分析】

假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.【题目详解】设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:化简①得18x+6y+8z=250④化简②得4x+2y+5z=108⑤由④-⑤得14x+4y+3z=142⑥由④×2-⑥×3得-6x+7z=74⑦即z+6(z-x)=74由z≤20得74-6(z-x)≤20解得z-x≥9故第三组销售人员的人数比第一组销售人员的人数多9人.【题目点拨】此题考查三元一次方程组的应用,解题关键在于列出方程.16、3.6×10﹣1【解题分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000036=3.6×10﹣1;故答案为:3.6×10﹣1.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、,【解题分析】

(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积【题目详解】解:(1)将绕点A旋转后得到,连接绕点A旋转后得到根据勾股定理得(2)过点A作于点G由(1)知,即为等腰直角三角形,根据勾股定理得故答案为:(1).,(2).【题目点拨】本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.18、【解题分析】

点在第二象限时,横坐标<0,纵坐标>0,可得关于x的不等式,解不等式即可得答案.【题目详解】点位于第二象限,,解得:,故答案为.【题目点拨】本题考查了象限内点的坐标特征,解一元一次不等式,解决本题的关键是记住各个象限内点的坐标的符号,进而转化为解不等式的问题.三、解答题(共78分)19、(1)30°;(2)①;②【解题分析】

(1)由旋转的性质,得△ABD≌,则,然后证明是等边三角形,即可得到;(2)①将绕点A逆时针旋转,使点B与点C重合,得到,连接.与(1)同理证明为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出,再由等边三角形的性质,即可求出答案.【题目详解】解:(1)根据题意,∵,,∴是等腰直角三角形,∴,∵,∴,由旋转的性质,则△ABD≌,∴,,,∴,∴是等边三角形,∴,∵,,∴≌,∴,∴;(2)①,.如图1,将绕点A逆时针旋转,使点B与点C重合,得到,连接.,,,,,..,为等边三角形,,,,,.②如图2,由①知,,在中,,.是等边三角形,,,.【题目点拨】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.20、(1)见解析;(2)见解析.【解题分析】

(1)首先证明△ADF≌△CBE,根据全等三角形的性质可得AD=CB,∠DAC=∠ACB,进而可得证明AD//CB,根据一组对边平行且等的四边形是平行四边形可得四边形ABCD是平行四边形;(2)首先根据角平分线的性质可得∠DAC=∠BAC,进而可得出AB=BC,再根据一组邻边相等的平行四边形是菱形可得结论【题目详解】解:(1),,,在中,,四边形是平行四边形.(2)平分,,,,,,平行四边形是菱形.【题目点拨】本题考查平行四边形的判定,熟练掌握平行四边形的性质及定义是解题关键.21、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解题分析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【题目详解】(1)设,将点(10,200)、(15,150)分别代入,则,解得,∴,∵蜜柚销售不会亏本,∴,又,∴,∴,∴;(2)设利润为元,则==,∴当时,最大为1210,∴定价为19元时,利润最大,最大利润是1210元;(3)当时,,110×40=4400<4800,∴不能销售完这批蜜柚.【题目点拨】本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.22、(1),点为;(2);(3)存在,点为,理由见解析【解题分析】

(1)利用一次函数图象上点的坐标特征可求出m的值及点A的坐标;(2)过点P作PH⊥x轴,垂足为H,则PH=,利用三角形的面积公式结合△PAC的面积为,可求出AC的长,进而可得出点C的坐标,再根据点P,C的坐标,利用待定系数法即可求出直线PC的解析式;(3)由题意,可知:四边形EMNQ为矩形,设点E的纵坐标为t,利用一次函数图象上点的坐标特征可得出点E的坐标为(t-3,t)、点Q的坐标为(,t),利用正方形的性质可得出关于t的一元一次方程,解之即可得出结论.【题目详解】解:(1)把点代入直线,即时,直线,当时,得:,点为(2)过点作轴,垂足为,由(1)得,∴解得:点为设直线为,把点、代入,得:解得:直线的解析式为(3)由已知可得,四边形为矩形,设点的纵坐标为,则得:点为轴点的纵坐标也为点在直线上,当时,又当时,矩形为正方形,所以故点为【题目点拨】本题考查了一次函数图象上点的坐标特征、三角形的面积、解一元一次方程、待定系数法求一次函数解析式以及正方形的性质,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出m的值及点A的坐标;(2)根据点的坐标,利用待定系数法求出一次函数解析式;(3)利用正方形的性质,找出关于t的一元一次方程.23、36平方米【解题分析】

连接AC,根据勾股定理,求得AC,再根据勾股定理的逆定理,判断三角形ACD是直角三角形.这块草坪的面积等于两个直角三角形的面积之和.【题目详解】连接AC,如图,∵AB⊥BC,∴∠ABC=90°.∵AB=3米,BC=4米,∴AC=5米.∵CD=12米,DA=13米,∴CD2+AC2=144+25=169=132=DA2,∴∠ACD=90°,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36(米2).【题目点拨】本题考查了勾股定理和勾股定理的逆定理.24、(1)甲每小时制作纸花60朵,每小时制作纸花80朵;(2)至少需要2.5小时完成任务.【解题分析】

(1)根据“甲制作120朵纸花的时间与乙制作160朵纸花的时间相同”列方程求解即可;(2)根据“不少于350朵”列出不等式求解即可.【题目详解】(1)设乙每小时制作纸花朵,根据题意,得解得x=80经检验,x=80是原方程的解.,∴甲每小时制作纸花60朵,每小时制作纸花80朵.(2)设需要小时完成任务,根据题意,得解得y≥2.5∴至少需要2.5小时完成任务.【题目点拨】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.25、(1)OE=OF;(2)OE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论