河北省保定市回民中学2023-2024学年数学九上期末经典试题含解析_第1页
河北省保定市回民中学2023-2024学年数学九上期末经典试题含解析_第2页
河北省保定市回民中学2023-2024学年数学九上期末经典试题含解析_第3页
河北省保定市回民中学2023-2024学年数学九上期末经典试题含解析_第4页
河北省保定市回民中学2023-2024学年数学九上期末经典试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市回民中学2023-2024学年数学九上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A.50° B.60° C.100° D.120°2.某河堤横断面如图所示,堤高米,迎水坡的坡比是(坡比是坡面的铅直高度与水平宽度之比),则的长是()A.米 B.20米 C.米 D.30米3.下列运算中,正确的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b24.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.36.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A.180°﹣2α B.2α C.90°+α D.90°﹣α7.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°8.如图,是半圆的直径,点在的延长线上,切半圆于点,连接.若,则的度数为()A. B. C. D.9.如图,直线l和双曲线y=(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S310.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为A. B. C. D.11.已知,点是线段上的黄金分割点,且,则的长为()A. B. C. D.12.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()A. B. C. D.二、填空题(每题4分,共24分)13.已知关于x的方程的一个根是1,则k的值为__________.14.时钟的时针不停地旋转,从上午时到上午时,时针旋转的旋转角是__________度.15.若二次函数y=mx2+2x+1的图象与x轴有公共点,则m的取值范围是_____.16.如图,一次函数的图象在第一象限与反比例函数的图象相交于A,B两点,当时,x的取值范围是,则_____.17.如图,将正方形绕点逆时针旋转至正方形,边交于点,若正方形的边长为,则的长为________.18.已知一元二次方程有一个根为0,则a的值为_______.三、解答题(共78分)19.(8分)经过点A(4,1)的直线与反比例函数y=的图象交于点A、C,AB⊥y轴,垂足为B,连接BC.(1)求反比例函数的表达式;(2)若△ABC的面积为6,求直线AC的函数表达式;(3)在(2)的条件下,点P在双曲线位于第一象限的图象上,若∠PAC=90°,则点P的坐标是.20.(8分)在边长为1个单位长度的正方形网格中,建立如图所示的平面直角坐标系,的顶点都在格点上,请解答下列问题:(1)作出向左平移4个单位长度后得到的,并写出点的坐标;(2)作出关于原点O对称的,并写出点的坐标;(3)已知关于直线L对称的的顶点的坐标为(-4,-2),请直接写出直线L的函数解析式.21.(8分)解方程:(1);(2).22.(10分)如图,已知抛物线与轴交于、两点,与轴交于点.(1)求抛物线的解析式;(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、.设点的横坐标为,的面积为.求关于的函数解析式及自变量的取值范围,并求出的最大值;(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标.23.(10分)某果品专卖店元旦前后至春节期间主要销售薄壳核桃,采购价为15元/kg,元旦前售价是20元/kg,每天可卖出450kg.市场调查反映:如调整单价,每涨价1元,每天要少卖出50kg;每降价1元,每天可多卖出150kg.(1)若专卖店元旦期间每天获得毛利2400元,可以怎样定价?若调整价格也兼顾顾客利益,应如何确定售价?(2)请你帮店主算一算,春节期间如何确定售价每天获得毛利最大,并求出最大毛利.24.(10分)如图,已知反比例函数的图像与一次函数的图像交于A(-1,),B在(,-3)两点.(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围.25.(12分)在中,,记,点为射线上的动点,连接,将射线绕点顺时针旋转角后得到射线,过点作的垂线,与射线交于点,点关于点的对称点为,连接.(1)当为等边三角形时,①依题意补全图1;②的长为________;(2)如图2,当,且时,求证:;(3)设,当时,直接写出的长.(用含的代数式表示)26.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.2、A【分析】由堤高米,迎水坡AB的坡比,根据坡度的定义,即可求得AC的长.【详解】∵迎水坡AB的坡比,∴,∵堤高米,∴(米).故选A.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,掌握坡比的概念是解题的关键3、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B.考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式4、C【详解】由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.5、B【解析】过点O作OC⊥AB,垂足为C,则有AC=AB=×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC==5,即点O到AB的距离是5.6、D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.7、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8、D【分析】根据题意,连接OC,由切线的性质可知,再由圆周角定理即可得解.【详解】依题意,如下图,连接OC,∵切半圆于点,∴OC⊥CP,即∠OCP=90°,∵,∴,∴,故选:D.【点睛】本题主要考查了切线的性质及圆周角定理,熟练掌握相关知识是解决本题的关键.9、D【分析】根据双曲线的解析式可得所以在双曲线上的点和原点形成的三角形面积相等,因此可得S1=S2,设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M,则可得△OP1M的面积等于S1和S2,因此可比较的他们的面积大小.【详解】根据双曲线的解析式可得所以可得S1=S2=设OP与双曲线的交点为P1,过P1作x轴的垂线,垂足为M因此而图象可得所以S1=S2<S3故选D【点睛】本题主要考查双曲线的意义,关键在于,它代表的就是双曲线下方的矩形的面积.10、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.【详解】根据勾股定理可得:BC=∴tanA=.故选:D.【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.11、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度.【详解】解:由于P为线段AB=2的黄金分割点,且,

则.

故选:A.【点睛】本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.12、B【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【详解】设,则DE=(6-x)cm,由题意,得,解得.故选B.【点睛】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.二、填空题(每题4分,共24分)13、-1【分析】根据一元二次方程的定义,把x=1代入方程得关于的方程,然后解关于的方程即可.【详解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14、【分析】先计算时钟钟面上每两个数字之间的度数,从上午时到上午时共旋转4个格,即可求得答案.【详解】钟面上每两个数字间的度数为,∵从上午时到上午时共旋转4个格,∴,故答案为:120.【点睛】此题考查钟面的度数计算,确定钟面上每两个数字事件的度数是解题的关键.15、m≤1且m≠1.【分析】由抛物线与x轴有公共点可知△≥1,再由二次项系数不等于1,建立不等式即可求出m的取值范围.【详解】解:y=mx2+2x+1是二次函数,∴m≠1,由题意可知:△≥1,∴4﹣4m≥1,∴m≤1∴m≤1且m≠1故答案为m≤1且m≠1.【点睛】本题考查二次函数图像与x轴的交点问题,熟练掌握交点个数与△的关系是解题的关键.16、1.【解析】由已知得A、B的横坐标分别为1,1,代入两解析式即可求解.【详解】由已知得A、B的横坐标分别为1,1,所以有解得,故答案为1.【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知函数图像交点的性质.17、【分析】连接AE,由旋转性质知AD=AB′=3、∠BAB′=30°、∠B′AD=60°,证Rt△ADE≌Rt△AB′E得∠DAE=∠B′AD=30°,由DE=ADtan∠DAE可得答案.【详解】解:如图,连接AE,∵将边长为3的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=3,∠BAB′=30°,∠DAB=90°∴∠B′AD=60°,在Rt△ADE和Rt△AB′E中,,∴Rt△ADE≌Rt△AB′E(HL),∴∠DAE=∠B′AE=∠B′AD=30°,∴DE=ADtan∠DAE=3×=,故答案为.【点睛】此题主要考查全等、旋转、三角函数的应用,解题的关键是熟知旋转的性质及全等三角形的判定定理.18、-1【解析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-1=0,可得a2+3a-1=0,解得a=-1或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-1,故答案为-1.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.三、解答题(共78分)19、(1)反比例函数的表达式为y=(2)直线AC的函数表达式为y=x﹣1;(3)(,8).【分析】(1)将点A坐标代入反比例函数表达式中,即可得出结论;

(2)先求出AB,设出点C的纵坐标,利用△ABC的面积为6,求出点C纵坐标,再代入反比例函数表达式中,求出点C坐标,最后用待定系数法求出直线AC的解析式;

(3)先求出直线AP的解析式,再和反比例函数解析式联立求解即可得出结论.【详解】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴k=4×1=4,∴反比例函数的表达式为y=;(2)设点C的纵坐标为m,∵AB⊥y轴,A(4,1),∴AB=4,∵△ABC的面积为6,∴AB×(1﹣m)=6,∴m=﹣2,由(1)知,反比例函数的表达式为y=,∴点C的纵坐标为:﹣2,∴点C(﹣2,﹣2),设直线AC的解析式为y=k'x+b,将点A(4,1),C(﹣2,﹣2)代入y=k'x+b中,,∴,∴直线AC的函数表达式为y=x﹣1;(3)由(2)知直线AC的函数表达式为y=x﹣1,∵∠PAC=90°,∴AC⊥AP,∴设直线AP的解析式为y=﹣2x+b',将A(4,1)代入y=﹣2x+b'中,﹣8+b'=1,∴b'=9,∴直线AP的解析式为y=﹣2x+9①,由(1)知,反比例函数的表达式为y=②,联立①②解得,(舍)或,∴点P的坐标为(,8),故答案为:(,8).【点睛】考查了待定系数法,三角形的面积公式,方程组的解法,用方程或方程组的思想解决问题是解本题的关键.20、(1)图详见解析,C1(-1,2);(2)图详见解析,C2(-3,-2);(3)【分析】(1)利用网格特点和平移的性质写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;(3)根据对称的特点解答即可.【详解】(1)如图,为所作,C1(−1,2);(2)如图,为所作,C2(−3,−2);(3)因为A的坐标为(2,4),A3的坐标为(−4,−2),所以直线l的函数解析式为y=−x.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.21、(1);(2)【分析】(1)化为一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【详解】(1)原方程可化为,得(2),所以.【点睛】本题考查的是一元二次方程的解法,能根据方程的特点灵活的选择解方程的方法是关键.22、(1);(2),当时,有最大值,最大值;(2),【解析】(1)由抛物线与x轴的两个交点坐标可设抛物线的解析式为y=a(x+1)(x-2),将点C(0,2)代入抛物线解析式中即可得出关于a一元一次方程,解方程即可求出a的值,从而得出抛物线的解析式;(2)设直线BC的函数解析式为y=kx+b.结合点B、点C的坐标利用待定系数法求出直线BC的函数解析式,再由点D横坐标为m找出点D、点E的坐标,结合两点间的距离公式以及三角形的面积公式求出函数解析式,利用配方法将S关于m的函数关系式进行变形,从而得出结论;(2)先求出对称轴,设M(1,y),然后分分BM为斜边和CM为斜边两种情况求解即可;【详解】解:(1)∵抛物线与x轴交于A(-1,0)、B(2,0)两点,∴设抛物线的解析式为y=a(x+1)(x-2),又∵点C(0,2)在抛物线图象上,∴2=a×(0+1)×(0-2),解得:a=-1.∴抛物线解析式为y=-(x+1)(x-2)=-x2+2x+2.∴抛物线解析式为;(2)设直线的函数解析式为,∵直线过点,,∴,解得,∴,设,,∴,∴,∵,∴当时,有最大值,最大值;(2)∵,∴对称轴为直线x=1,设M(1,y),则CM2=1+(y-2)2=y2-6y+10,BM2=y2+(1-2)2=y2+4,BC2=9+9=18.当BM为斜边时,则y2-6y+10+18=y2+4,解得y=4,此时M(1,4);当CM为斜边时,y2+4+18=y2-6y+10,解得y=-2,此时M(1,-2);综上可得点的坐标为,.【点睛】本题考查了二次函数的性质、待定系数法求函数解析式、两点间的距离公式、三角形的面积公式以及勾股定理,解题的关键:(1)待定系数法求函数解析式;(2)求出S与m的关系式;(2)分类讨论.23、(1)21,19;(2)售价为22元时,毛利最大,最大毛利为1元【分析】(1)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况列出一元二次方程确定售价即可;(2)根据销售问题的等量关系:每天获得毛利=每千克利润×销售量,分涨价和降价两种情况设每天的毛利为w元,涨价和降价两种情况列出二次函数求出售价进行比较即可确定售价和最大毛利.【详解】解:(1)根据题意,得①设售价涨价x元,(20﹣15+x)(450﹣50x)=2400解得x1=1,x2=3,∵调整价格也兼顾顾客利益,∴x=1,则售价为21元;②设售价降价y元,(20﹣15﹣y)(450+150y)=2400解得y1=y2=1,则售价为19元;答:调整价格也兼顾顾客利益,售价应定为19元.(2)根据题意,得①设售价涨价x元时,每天的毛利为w1元,w1=(20﹣15+x)(450﹣50x)=﹣50x2+200x+2250=﹣50(x﹣2)2+1.当售价涨价2元,即售价为22元时,毛利最大,最大毛利为1元;②设售价降价y元时,每天的毛利为w2元,w2=(20﹣15﹣y)(450+150y)=﹣150y2+300y+2250=﹣150(y﹣1)2+2400当降价为1元时,即售价为19元时,毛利最大,最大毛利为2400元.综上所述,售价为22元时,毛利最大,最大毛利为1元.【点睛】本题考查了一元二次方程的应用,二次函数的应用,二次函数的性质,解决本题的关键是找到题目中蕴含的等量关系,熟练掌握二次函数的性质,能够将一般式转化为顶点式.24、(1)1;(2)x<-1或0<x<【分析】(1)将点B代入求出,再将点A代入即可求出的值;(2)由图像可得结论.【详解】(1)把B(,-3)代入中,得∴.∴.当时,.(2)如图,过点A、点B且平行于y轴及y轴所在的三条直线把平面分成了4部分由图象可得x<-1或0<x<时一次函数的图像在反比例函数图像的上方时,此时一次函数值大于反比例函数值,所以x的取值范围为x<-1或0<x<.【点睛】本题考查了反比例函数,将反比例函数的解析式与图像相结合是解题的关键.25、(1)①见解析,②.(2)见解析;(3).【分析】(1)①根据题意补全图形即可;②根据旋转的性质和对称的性质易证得,利用特殊角的三角函数值即可求得答案;(2)作于,于,证得四边形是矩形,求得,再证得,求得,再求得,即可证得结论.(3)设则,证得,求得,再作DM⊥AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论