四川省成都市新都区2024届八年级数学第二学期期末监测试题含解析_第1页
四川省成都市新都区2024届八年级数学第二学期期末监测试题含解析_第2页
四川省成都市新都区2024届八年级数学第二学期期末监测试题含解析_第3页
四川省成都市新都区2024届八年级数学第二学期期末监测试题含解析_第4页
四川省成都市新都区2024届八年级数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市新都区2024届八年级数学第二学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数232341则这些运动员成绩的中位数、众数分别为A.、 B.、 C.、 D.、2.如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为()A.1 B. C.2 D.3.如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.6 B.8 C.12 D.104.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定5.下列图案中,不是中心对称图形的是()A. B. C. D.6.将点向左平移个单位长度,在向上平移个单位长度得到点,则点的坐标是()A. B. C. D.7.如图所示,已知四边形ABCD的对角线AC、BD相交于点O,则下列能判断它是正方形的条件是()A., B.C.,, D.,8.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是()A.y=x B.y=1﹣x C.y=x+1 D.y=x﹣19.直线y=3x-1与y=x+3的交点坐标是()A.(2,5) B.(1,4) C.(-2,1) D.(-3,0)10.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.11.若分式的值等于0,则的取值是().A. B. C. D.12.下列函数的图象不经过第一象限,且y随x的增大而减小的是()A. B. C. D.二、填空题(每题4分,共24分)13.若关于x的分式方程有增根,则a的值为_______14.若分式有意义,则实数x的取值范围是_______.15.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是.16.写出一个轴对称图形但不是中心对称图形的四边形:__________________17.如图,已知在▱ABCD中,∠B=60°,AB=4,BC=8,则▱ABCD的面积=_____.18.已知中,,点为边的中点,若,则长为__________.三、解答题(共78分)19.(8分)如图,中任意一点经平移后对应点为,将作同样的平移得到,其中点A与点D,点B与点E,点C与点F分别对应,请解答下列问题:(1)画出,并写出点D、E、F的坐标..(2)若与关于原点O成中心对称,直接写出点D的对应点的坐标.20.(8分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.(1)求A、B两种礼盒的单价分别是多少元?(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?21.(8分)计算:(1)2﹣6+3;(2)(1+)(﹣)+(﹣)×.22.(10分)计算:(1)-|5-|+;(2)-(2+)223.(10分)解不等式组:请结合题意填空,完成本题解答:(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.24.(10分)(1)因式分解:m3n-9mn;(2)解不等式组:.25.(12分)如图,在△ABC中,CA=CB=5,AB=6,AB⊥y轴,垂足为A.反比例函数y=(x>0)的图象经过点C,交AB于点D.(1)若OA=8,求k的值;(2)若CB=BD,求点C的坐标.26.如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

根据中位数和众数的概念进行求解.【题目详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65,1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80众数为:1.75;中位数为:1.1.故选C.【题目点拨】本题考查1.中位数;2.众数,理解概念是解题关键.2、C【解题分析】

首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S=,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.【题目详解】解:根据反比例函数得对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于,又∴S四边形ABCD=2.故答案选:C.【题目点拨】本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.3、D【解题分析】

要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【题目详解】解:如图,连接BM,∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故选:D.【题目点拨】此题考查正方形的性质和轴对称及勾股定理等知识的综合应用,解题的难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.4、C【解题分析】

已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【题目详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得

BD===9,

在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.

②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.

故选:C.【题目点拨】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.5、B【解题分析】

利用中心对称图形的性质,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而判断得出即可.【题目详解】A、是中心对称图形,故A选项错误;

B、不是中心对称图形,故B选项正确;

C、是中心对称图形,故C选项不正确;

D、是中心对称图形,故D选项错误;

故选:B.【题目点拨】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.6、D【解题分析】

根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.【题目详解】将点A(2,−1)向左平移3个单位长度,再向上平移4个单位长度得到点B(−1,3),故选:D.【题目点拨】本题考查坐标平移,记住坐标平移的规律是解决问题的关键.7、A【解题分析】

根据正方形的判定定理即可求解.【题目详解】A∵,∴四边形ABCD为矩形,由,所以矩形ABCD为正方形,B.,四边形ABCD为菱形;C.,,,四边形ABCD为菱形;D.,,不能判定四边形ABCD为正方形,故选A.【题目点拨】此题主要考查正方形的判定,解题的关键是熟知正方形的判定定理.8、C【解题分析】

过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;【题目详解】解:过点C作CE⊥y轴于点E.∵∠CEA=∠CAB=∠AOB=90°,∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠EAC=∠ABO,∵AC=AB,∴△CEA≌△AOB(AAS),∴EA=OB=x,CE=OA=1,∵C的纵坐标为y,OE=OA+AD=1+x,∴y=x+1.故选:C.【题目点拨】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、A【解题分析】

根据求函数图象交点的坐标,转化为求两个一次函数构成的方程组解的问题,因此联立两函数的解析式所得方程组,即为两个函数图象的交点坐标.【题目详解】联立两函数的解析式,得解得,则直线y=3x-1与y=x+3的交点坐标是,故选:A.【题目点拨】考查了两条直线交点坐标和二元一次方程组解的关系,二元一次方程组的求解,注意函数的图象和性质与代数关系的转化,数形结合思想的应用.10、B【解题分析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.11、C【解题分析】

分式值为零的条件是分子等于零且分母不等于零.【题目详解】∵分式的值等于1,∴x-2=1,x+1≠1.解得:x=2.故选C.【题目点拨】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.12、A【解题分析】

分别分析各个一次函数图象的位置.【题目详解】A.,图象经过第二、四象限,且y随x的增大而减小;B.,图象经过第一、二、三象限;C.,图象经过第一、二、四象限;D.,图象经过第一、三、四象限;所以,只有选项A符合要求.故选A【题目点拨】本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.二、填空题(每题4分,共24分)13、3【解题分析】

先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.【题目详解】解去分母得2-(x-a)=7(x-5)把x=5代入得2-(5-a)=0,解得a=3故填:3.【题目点拨】此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.14、【解题分析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.解:∵分式有意义,∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.15、1.【解题分析】

∵100,80,x,1,1,这组数据的众数与平均数相等,∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.∴(100+80+x+1+1)÷5=1,解得,x=1.∵当x=1时,数据为80,1,1,1,100,∴中位数是1.16、等腰梯形(答案不唯一)【解题分析】

根据轴对称图形和中心对称图形的概念,知符合条件的图形有等腰三角形,等腰梯形,角,射线,正五边形等.【题目详解】是轴对称图形但不是中心对称图形的,例如:等腰梯形,等腰三角形,角,射线,正五边形等.故答案为:等腰梯形(答案不唯一).【题目点拨】此题主要考查了中心对称图形和轴对称图形,此题为开放性试题.注意:只要是有奇数条对称轴的图形一定不是中心对称图形.17、.【解题分析】

如图,作AH⊥BC于H.根据平行四边形ABCD的面积=BC•AH,即可解决问题.【题目详解】如图,作AH⊥BC于H.在Rt△ABH中,∵AB=4,∠B=60°,∠AHB=90°,∴AH=AB•sin60°=2,∴平行四边形ABCD的面积=BC•AH=16.故答案为:16.【题目点拨】本题考查了平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18、【解题分析】

根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】∵∠ACB=90°,D为AB的中点,∴AB=2CD=1,故答案为:1.【题目点拨】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.三、解答题(共78分)19、(1)D(0,4),E(2,2),F(3,5),画图见解析;(2)(0,-4)【解题分析】

(1)根据平面直角坐标系中点的坐标的平移规律求解可得;(2)根据关于原点中心对称的规律“横纵坐标都互为相反数”即可求得.【题目详解】解:(1)如图,△DEF即为所求,点D的坐标是,即(0,4);点E的坐标是,即(2,2);点F的坐标为,即(3,5);(2)点D(0,4)关于原点中心对称的的坐标为(0,-4).【题目点拨】本题主要考查了平移变换以及旋转变换,正确得出对应点位置是解题关键.20、(1)A种礼盒单价为90元,B种礼盒单价为120元;(2)见解析;(3)1320元.【解题分析】

(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.【题目详解】(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,则:3x+4x=210,解得x=30,所以A种礼盒单价为3×30=90元,B种礼盒单价为4×30=120元.(2)设A种礼盒购进a个,购进B种礼盒b个,则:90a+120b=9900,可列不等式组为:,解得:30≤a≤36,因为礼盒个数为整数,所以符合的方案有2种,分别是:第一种:A种礼盒30个,B种礼盒60个,第二种:A种礼盒34个,B种礼盒57个.(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,a=110-,则w=(2﹣m)b+1320,若使所有方案都获利相同,则令2﹣m=0,得m=2,此时店主获利1320元.【题目点拨】此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.21、(1)14;(2)【解题分析】

(1)直接利用二次根式的性质化简得出答案;(2)首先利用二次根式乘法运算法则化简,进而计算得出答案.【题目详解】(1)原式=4-6×+12=4-2+12=14;(2)原式=-+-3+6-3=.【题目点拨】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.22、(1)13+4;(2)-1.【解题分析】

(1)先把二次根式化简,然后去绝对值后合并即可;

(2)利用分母有理化和完全平方公式计算.【题目详解】解:(1)原式=3-(5-)+18

=3-5++18

=13+4;

(2)原式=4-(4+4+3)

=4-1-4

=-1.故答案为:(1)13+4;(2)-1.【题目点拨】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、(1)x≤2;(2)x>-3;(3)把不等式①和②的解集在数轴上表示见解析;(4)-3<x≤2,【解题分析】

(1)根据不等式的基本性质解不等式即可;(2)根据不等式的基本性质解不等式即可;(3)根据数轴表示解集的方法表示即可;(4)根据不等式组公共解集的取法即可得出结论.【题目详解】(1)解不等式①,得x≤2故答案为:x≤2;(2)解不等式②,得x>-3故答案为:x>-3;(3)把不等式①和②的解集在数轴上表示出来如下:(4)原不等式组的解集为-3<x≤2,【题目点拨】此题考查的是解不等式组,掌握不等式的基本性质和利用数轴表示解集是解决此题的关键.24、(1);(2).【解题分析】

(1)原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论